• Title/Summary/Keyword: urban canyon

Search Result 53, Processing Time 0.018 seconds

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Development of Empirical Model for the Air Pollutant Dispersion in Urban Street Canyons Using Wind Tunnel Test (풍동실험을 이용한 도시거리협곡에서의 대기오염확산모델의 개발)

  • Park, Seong-Kyu;Kim, Shin-Do;Lee, Hee-Kwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.852-858
    • /
    • 2005
  • Modeling techniques for air quality are useful tools in air quality management. Especially, the air quality in urban area is significantly influenced by local surroundings such as buildings and traffic. When considering the air quality in a street canyon, which is usually filmed by a series of consecutive buildings and a street, currently available air dispersion model have a number of limitations to predict the air quality properly. In this study, it is aimed to propose an empirical model for the air quality in urban street canyons. A series of wind tunnel tests, followed by statistical analysis, were conducted. In conclusion, it is found that a wide street canyon and a perpendicular external wind to the street canyon are beneficial to achieve an enhanced air quality in street canyon environment. The model prediction using the proposed model also shows reliable correlations to the wind tunnel test results.

A Study on Sensitivity of Pollutant Dispersion to Inflow Wind Speed and Turbulent Schmidt Number in a Street Canyon (도시 협곡에서 유입류 풍속과 난류 슈미트수에 대한 대기오염물질 확산의 민감도 연구)

  • Wang, Jang-Woon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.659-667
    • /
    • 2015
  • In this study, sensitivity of inflow wind speed and turbulent Schmidt number to pollutant dispersion in an urban street canyon is investigated, by comparing CFD-simulated results to wind-tunnel results. For this, we changed systematically inflow wind speed at the street-canyon height ($1.5{\sim}10.0m\;s^{-1}$ with the increment of $0.5m\;s^{-1}$) and turbulent Schmidt number (0.2~1.3 with interval of 0.1). Also, we performed numerical experiments under the conditions that turbulent Schmidt numbers selected with the magnitude of mean kinetic energy at each grid point were assigned in the street canyon. With the increase of the inflow wind speed, the model underestimated (overestimated) pollutant concentration in the upwind (downwind) side of the street canyon because of the increase of pollutant advection. This implies that, for more realistic reproduction of pollutant dispersion in urban street canyons, large (small) turbulent Schmidt number should be assigned for week (strong) inflow condition. In the cases of selectively assigned turbulent Schmidt number, mean bias remarkably decreased (maximum 60%) compared to the cases of constant turbulent Schmidt number assigned. At week (strong) inflow wind speed, root mean square error decreases as the area where turbulent Schmidt number is selectively assigned becomes large (small).

Development of a New E-$\varepsilon$ Turbulence Model for Analysing the Air Flow Field within an Urban Street Canyon (도시협곡내 유동장 해석을 위한 새로운 E-$\varepsilon$ 난류 모델의 개발)

  • 정상진;박옥현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 1999
  • A new E-$\varepsilon$ turbulence numerical model is proposed for analysing the turbulent air flow field within are urban street canyon. In this model the equations of eddy viscosity and energy dissipation ae reformed by considering the Kolmogorov time scale and streamline curvature effect. Application results of the new E-$\varepsilon$ model have been compared with those of standard E-$\varepsilon$ model and Yang and Shih's one, which are commonly used ones in engineering fields, and with field experiment results of DePaul and Sheih. The new model appears to be generally superior to other both models in the prediction of an air flow field within street canyon.

  • PDF

Wind Characteristics of Urban Street Canyon at High Rise Building Area (고층건물 도로협곡의 바람특성)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Sung-Hee;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2012
  • The street canyon forms the geometric unit of the built environment. The geometry makes up urban canyons and it influences the urban climate. In order to investigate the wind characteristics of urban street canyon at Dogok-dong, Gangnam-gu in Seoul, the wind direction and wind speed data were observed and analyzed by using 2-D ultra sonic and propeller wind monitor from May 5, 2010 to May 4, 2011. The results show that the prevailing wind direction was west at Station A(Military Mutual Aid Association Building), southwest at Station B(Sookmyung Girls' High School) and the wind speed of Station B was higher than Station A. There were diurnal differences about prevailing wind direction between two stations : it was westerly wind at Station A for a whole day, but at Station B only from 22 : 00 to 04 : 00. However, Station B is different from Station A at other time. At Station B, it was easterly wind from 04 : 00 to 12 : 00, southwesterly wind from 12 : 00 to 22 : 00. In terms of seasonal(except winter) frequency, the spring shows the highest frequency and fall was the next.

Application of GNSS Multipath Map by Correction Projection to Position Domain in Urban Canyon (도심지 GNSS 다중경로 오차 지도 적용을 위한 다중경로 보정정보 위치 영역 투영 기법)

  • Yongjun Lee;Heonho Choi;Byungwoon Park
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.155-158
    • /
    • 2024
  • Multipath, a major error source in urban GNSS positioning (global navigation satellite system), pose a challenge due to its site-dependent nature, varying with the user's signal reception environment. In our previous study, we introduced a technique generating GNSS multipath map in urban canyon. However, due to uncertainty in initial GNSS positions, applying multipath maps required generating multiple candidate positions. In this study, we present an efficient method for applying multipath maps by projecting the multipath correction in position domain. This approach effectively applies multipath maps, addressing the challenges posed by urban user position uncertainties.

Effects of Trees on Flow and Scalar Dispersion in an Urban Street Canyon (도시 협곡에서 수목이 흐름과 스칼라 물질 확산에 미치는 영향)

  • Kang, Geon;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.685-692
    • /
    • 2015
  • In this study, the effects of trees on flow and scalar dispersion in an urban street canyon were investigated using a computational fluid dynamics (CFD) model. For this, we implemented the drag terms of trees to the CFD model, and compared the CFD-simulated results to the wind-tunnel results. For comparison, we considered the same building configuration as the wind-tunnel experiment. The trees were located at the center of street canyon with the aspect ratio (defined as the ratio of the street width to the building height) of 1. First, the flow characteristics were analyzed in the tree-free and high-density tree cases and the results showed that the CFD model reproduced well the flow pattern of the wind-tunnel experiment and reflected the drag effect of trees in the street canyon. Then, the dispersion characteristics of scalar pollutants were investigated for the tree-free, low-density tree and medium-density tree cases. In the tree-free case, the nondimensionalized concentration distribution simulated by the CFD model was quite similar to that in the wind-tunnel experiment in magnitude and pattern. The correlation coefficients between the measured and simulated concentrations are more than 0.9 in all the cases. As the tree density increased, nondimensionalized concentration increased (decreased) near the wall of the upwind (downwind) building, which resulted from the decrease in wind speed case by the drag effect of trees. However, the CFD model underestimated (overestimated) the concentration near the wall of upwind (downwind) building.

The Effect of the Materials of an Outer Wall and the Paved Street on Human Thermal Comfort in a Housing Complex in Pohang City (포항시의 집합 주거공간에 있어서 외장재 및 도로 구성재료가 인체 온열 쾌적성에 미치는 영향)

  • Jeong, Chang-Won;Kim, Kyung-Dae;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.319-327
    • /
    • 2001
  • The objective of this study is to clarify the effect of thermal radiation environments on human thermal comfort, depending on different canyon types and surface materials on the human thermal comfort in a housing complex in Pohang city, Korea. For this purpose, the operative temperature and new effective temperature were calculated based on the modified mean radiant temperature of canyon models variated by the existence of direct radiation existence, surface materials, and the width and length of the street spaces in a housing complex. These indices for the canyon have been calculated from the meteorological data of Pohang city, which include air temperature, relative humidity, air velocity, global solar radiation and cloud. And the monthly averages of these climate factors measured at noon have been used. The results are as follows: (1) It is revealed that the short-wave radiosity reached the human body is affected by direct solar radiation and surface materials, and the long-wave radiosity by canyon types. (2) The existence of direct solar radiation, the kinds of surface materials and canyon types affect operative temperature($OT_n$) and new effective temperature($ET^*{_n}$). (3) The analysis of the human heat balance in the canyon indicates that the influence of radiation on human body is marc likely to be affected by the existence of direct solar radiation on human model.

  • PDF