References
- 강미주(2015), 특집기획 : 해운분야 ICT혁명, 새로운 해운시대 열리나, 해양한국, 500호, http://www.monthlymaritimekorea.com/news/article-View.html?idxno=16027.
- 고준철.이해욱.정지윤.강경식(2012), 빅데이터의 새로운 고객 가치와 비즈니스 창출을 위한 대응 전략, 대한안전경영과학회지, 14권 4호, 229-238.
- 고태형.김영택(2012), 중소기업의 이러닝 수용과 성과분석을 위한 통합연구모형, 대한경영학회지, 25권, 2509-2529.
- 김승섭(2015), 특집기획 : 항만 터미널분야-빅데이터, IoT, 드론, 로봇 활용해 생산.효율성, 안전.친환경성 높인다, 해양한국, 500호, http://www.monthlymaritimekorea.com/news/articleView.html?idxno=16048.
- 김은영.이정훈.서동욱(2013), 빅데이터 시스템의 수용의도에 영향을 미치는 수용조직의 환경요인에 관한 연구, Journal of Information Technology Applications & Management, 20(4), 1-18.
- 김이환(2015), 업무-기술적합에 따른 빅데이터 분석기술이 기대성과에 미치는 영향-혁신확산이론을 중심으로, 경희대학교 박사학위논문.
- 김정선(2015), 혁신기술로서의 빅데이터 국내 기술수용 초기 특성 연구, 이화여자대학교 박사학위논문.
- 김정환.박종석(2016), 정보기술(ICT) 경쟁우위가 공급사슬통합에 미치는 영향, 한국항만경제학회지, 제32권 1호, 151-163.
- 김태훈.김상열(2013), 효율적인 항만공사의 운영과 관리를 위한 데이터 웨어하우스 구현방안에 관한 연구, 한국항만경제학회지, 제29권 2호, 195-209.
- 박귀희(2016), 행정서비스에서 빅데이터 활용의 결정요인에 관한 연구-데이터 품질관리를 중심으로, 계명대학교 박사학위논문.
- 염수환(2015), 정보자산 빅데이터의 서비스기대가 이용의도에 미치는 영향- e Commerce 유용성의 조절효과를 중심으로, 단국대학교 석사학위논문.
- 윤수영(2016), 자원기반관점에서 빅데이터 사용의도에 영향을 미치는 요인에 관한 연구, 단국대학교 박사학위논문.
- 윤수영(2016), 자원기반관점에서 빅데이터 사용의도에 영향을 미치는 요인에 관한 연구, 단국대학교 박사학위논문.
- 이선우(2016), 조직에서의 빅데이터 시스템 도입을 위한 결정요인에 대한 연구, 성균관대학교 박사학위논문.
- 이재홍(2011), 항만 물류서비스의 기술수용모델(TAM) 적용에 관한 실증적 연구, 한국항만경제학회지, 제27권 4호, 13-35.
- 한국IDC(2016), 2017년 국내 IT 시장 10대 주요 예측.
- Agarwal, R., and Karahanna, E.(2000), Time Flies When You're Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage, MIS Quarterly, 24(4), 665-694.
- Bagozzi, R. and Yi, Y.(1988) On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Sciences, 16, 74-94.
- Bagozzi, R.(2011). Measurement and Meaning in Information Systems and Organizational Research: Methodological and Philosophical Foundations, MIS Quarterly, 35(2), 261-292.
- Barclay, D., Thompson, R. and Higgins, C. (1995), The Partial Least Squares (PLS) Approach to Causal Modeling: Personal Computer Adoption and Use an Illustration, Technology Studies, 2(2), 285-309.
- Borrero, J. D. Yousafzai, S. Y., Javed, U. and Page, K. L.(2014), Expressive Participation in Internet Social Movements: Testing the Moderating Effect of Technology Readiness and Sex on Student SNS Use, Computers in Human Behavior, 30, 39-49.
- Chan, F. T. S., Chong, A. Y. L. and Zhou, L.(2012), An Empirical Investigation of Factors Affecting e-Collaboration Diffusion in SMEs, International Journal of Production Economics, 138(2), 329-344.
- Ciganek, A., Haseman, W. D. and Ramamurthy, K. (2014). Time to Decision: The Drivers of Innovation Adoption Decisions, Enterprise Information Systems, 8(2), 279-308.
- Crump, G.(2012), Cloud Storage Infrastructures Raise Many Issues, Information Week.
- Dasgupta, S., Agarwal, D., Ioannidis, A. and Gopalakrishnan, S.(1999), Determinants of Information Technology Adoption: An Extension of Existing Models to Firms in a Developing Country, Journal of Global Information Management, 7(3), 30-40.
- Davis, F. D.(1989), Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology, MIS Quarterly, 13(3), 319-340.
- Delone, W. and McLean, E.(2004), The DeLone and McLean Model of Information Systems Success: A Ten-Year Update, Journal of Management Informations, 19(4), 9-30.
- Efron, B. and Tibshirani, R. J.(1993). An Introduction to the Bootstrap. New York: Chapman & Hall.
- Fornell, C, D. and Larcker, F.(1981) Evaluating Structural Equation Models with Unobserved Variables and Measurement Errors, Marketing Res., 18(1), 39-50.
- Fuksa, M.(2013), Mobile Technologies and Services Development Impact on Mobile Internet Usage in Latvia, Procedia Computer Science, 26, 41-50.
- Gartner(2011), Getting Value from Big Data.
- Gartner(2012), High-Tech Tuesday Webinar: Big Data Opportunities in Vertical Industries.
- Gefen, D. and Straub, D.(2005) A Practical Guide To Factorial Validity Using PLS-Graph: Tutorial And Annotated Example, Communications of the Association for Information Systems, 16(1), 91-109.
- Hair, J. F., Hult, G. T. M., Ringle, C. M. and Sarstedt, M.(2013), A Primer on Partial Least Squares Structural Equation Modeling(PLS-SEM), Sage.
- Hsiu-Fen L.(2013), Understanding the Determinants of Electronic Supply Chain Management System Adoption : Using the Technology-Organization-Environment Framework, Technological Forecasting and Social Change, 86, 80-92.
- Im, II, Hong, S. and Kang, M. S.(2011), An International Comparison of Technology Adoption: Testing the UTAUT Model, Information & Management, 48(1), 1-8.
- James, W. P., Yushan, Z. and John A. S.(2012), Technology Adoption by Small Business : An Exploratory Study of The Interrelationships of Owner and Environmental Factors, International Small Business Journal, 30, 406-431.
- Jeyaraj, A., Joseph, W. and Mary, C.(2006), A Review of the Predictors, Linkages, and Biases in IT Innovation Adoption Research, Journal of Information Technology, 21(1), 1-23.
- Jiunn-Woei L., David, C. Y. and Yen-Ting, W.(2004), An Exploratory Study to Understanding the Critical Factors Affecting the Decision to Adopt Cloud Computing in Taiwan Hospital, International Journal of Information Management, 34(1), 28-36.
- Lai, I. K. W. and Lai, D. C. F.(2014), User Acceptance of Mobile Commerce : An Empirical Study in Macau, International Journal of Systems Science, 45(6), 1321-1331.
- Lancaster, S., Yen, D. C. and Ku, C. Y.(2006) E-Supply Chain Management: An Evaluation of Current Web Initiatives, Information Management & Computer Security, 14(2), 167-184.
- Lin, H. F.(2014), Understanding the Determinants of Electronic Supply Chain Management System Adoption : Using the Technology-Organization-Environment Framework, Technological Forecasting & Social Change, 86, 80-92.
- Mansfield, E.(1997), Links between Academic Research and Industrial Innovations, in: David, P. & E. Steinmueller (Eds.), A Production Tension: University-Industry Collaboration in the Era of Knowledge- based Economic Development (Stanford University Press, Palo Alto).
- Mayer J. D. and Salovey P.(1997). What is Emotional intelligence?, in Emotional Development and Emotional Intelligence: Implications for Educators, eds Salovey P., Sluyter D., editors. (New York, NY: Basic Books;), 3-31.
- Moore, G. C. and Benbasat, I.(1991), Development of An Instrument to Measure the Perceptions of Adopting an Information Technology Innovation, Information Systems Research, 2(3), 192-222.
- Mumtaz, A. H., Steve, C. and Stephen, S.(2012), A Conceptual Model for the Process of IT Innovation Adoption in Organizations, Journal of Engineering and Technology Management, 29(3), 358-390.
- Nunnally, J. C. and Bernstein, I. H.(1994), Psychometric Theory, McGraw-Hill Series in Psychology, McGraw-Hill, New York.
- Oliveira, T., Thomas, M. and Espadanal, M. (2014), Assessing the Determinants of Cloud Computing Adoption: An Analysis of the Manufacturing and Services Sectors, Information and Management, 51, 497-510.
- Robinson, L.(2009), A Summary of Diffusion of Innovations, Available at: http://www.enablingchange.com.au/Summary_Diffusion_Theory.pdf
- Rogers, E. M.(2003), Diffusion of Innovations, Free Press, 5th ed.
- Schniederjans, D. G. and Yadav, S.(2013), Successful ERP Implementation : An Integrative Model, Business Process Management Journal, 19(2), 346-398.
- Sila, I.(2010), Do Organizational and Environmental Factors Moderate the Effects of Internet-based Inter Organizational Systems on Firm Performance?, European Journal of Information Systems, 19, 581-600.
- Tarofder, A. K., Marthandan, G. and Haque, A. (2010), Critical Factors for Diffusion of Web Technologies for Supply Chain Management Functions: Malaysian Perspective, European Journal of Social Sciences, 12(3), 490-505.
- Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y. and Lauro, C.(2005), PLS Path Modeling, Computational Statistics and Data Analysis, 48, 159-205.
- Tenenhaus, M., Mauger, E. and Guinot, C. (2010). Use of ULS-SEM and PLS-SEM to Measure a Group Effect in a Regression Model Relating Two Blocks of Binary Variables, Handbook of Partial Least Squares, Springer.
- Tiago, O., Manoj, T., and Mariana, E.(2014), Assessing the Determinants of Cloud Computing Adoption: An Analysis of the Manufacturing and Services Sectors, Information & Management. 51, 497-510.
- Tornatzky, L. G., Fleischer, M. and Chakrabarti, A. K.(1990) The Process of Technological Innovation, Lexington Books.
- Venkatesh, V. and Davis, F.(2000), A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies, Management Science, 46(2), 186-204.
- Venkatesh, V., Morris, M., Davis, G. and Davis, F.(2003), User Acceptance of Information Technology: Toward a Unified View, MIS Quarterly, 27(3), 424-478.
- Vong, S., Zo, H. and Ciganek, A. P.(2016). Knowledge Sharing in the Public Sector: Empirical Evidence from Cambodia, Information Development, 32(3), 409- 423.
- Waller, M. A. and Fawcett, S. E.(2013), Data Science, Predictive Analytics, and Big Data: A Revolution that Will Transform Supply Chain Design and Management, Journal of Business Logistics, 34(2), 77-84.
- Werts, C. E., Linn, R. L. and Joreskog, K. G. (1974), Intra Class Reliability Estimates: Testing Structural Assumptions, Educational and Psychological Measurement, 34, 25-33.
- Wold, S.(1997). Wold, Herman Ole Andreas". In Leading Personalities in Statistical Sciences. From the Seventeenth Century to the Present. Johnson, N. L. and Kotz, S. (eds.) Wiley, New York.
- Wu, I. L. and Wu, K. W.(2005), A Hybrid Acceptance Approach for Exploring e-CRM Adoption in Organizations, Behaviour & Information Technology, 24(4), 303-316.
- Zhu, K., Kraemer, K. L., Xu, S. and Dedrick, J. (2004), Information Technology Payoff in e-Business Environments: An International Perspective on Value Creation of e-Business in the Financial Services Industry, Management Inform. Systems, 21(1), 17-54.
- Zhu, K., and Kraemer, K. L.(2005), Post-Adoption Variations in Usage and Value of e-Business by Organizations: Cross-Country Evidence from the Retail Industry, Inform. Systems Res, 16(1), 61-84.
- Zhu, K., Kraemer, K. L. and Xu, S.(2006), The Process of Innovation Assimilation by Firms in Different Countries: A Technology Diffusion Perspective on E-Business, Management Science, 52(10), 1557-1576.