Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Hee Ae (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Park, Cheol Woo (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Kang, Hyo Sang (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Joo Hyung (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • In, Jun-Hyeong (Division of Advanced Materials Science and Engineering, Hanyang University) ;
  • Lee, Seong Kuk (UNIMO Photron) ;
  • Shim, Kwang Bo (Division of Advanced Materials Science and Engineering, Hanyang University)
  • Published : 2018.10.01

Abstract

The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Keywords

Acknowledgement

Supported by : Ministry of Trade, Industry, and Energy

References

  1. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353. https://doi.org/10.1063/1.96549
  2. S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 32 (1993) L16. https://doi.org/10.1143/JJAP.32.L16
  3. S. Nishida, and N. Kobayashi, Phys. Status Soldi (a) 188 (2001) 113. https://doi.org/10.1002/1521-396X(200111)188:1<113::AID-PSSA113>3.0.CO;2-C
  4. P. Von Dollen, S. Pimputkar, and J.S. Speck, Angew. Chem. Int. Ed. 53 (2014) 13975.
  5. K. Fujito, S. Kubo, H. Nagaoka, T. Mochizuki, H. Namita, and S. Nagao, J. Cry. Growth 311 (2009) 3011-3014. https://doi.org/10.1016/j.jcrysgro.2009.01.046
  6. H.M. Foronda, A.E. Romanov, E.C. Young, C.A. Robertson, G.E. Beltz, and J.S. Speck, J. Appl. Phys. 120 (2016) 035104. https://doi.org/10.1063/1.4959073
  7. X. Liu, D. Li, X. Sun, Z. Li, Z. Li, H. Song, H. Jiang, and Y. Chen, Cryst. Eng. Comm. 16 (2014) 8058-8063. https://doi.org/10.1039/C4CE01003E
  8. A.P. Zhang, L.B. Rowland, E.B. Kaminsky, V. Tilak, J.C. Grande, J. Teetosv, A. Vertiatchikh, and L.F. Eastman, J. Electron. Mater. 32[5] (2003) 388-394. https://doi.org/10.1007/s11664-003-0163-6
  9. S. Choi, E. Heller, D. Dorsey, R. Vetury, and S. Graham, J. Appl. Phys. 133 (2013) 093510.
  10. F.C. Wang, C.L. Cheng, Y.F. Chen, C.F. Huang, and C.C. Yang, Semicon. Sci. Technol. 22 (2007) 896-899. https://doi.org/10.1088/0268-1242/22/8/012
  11. J.H. Park, H.E. Lee, J.H. Lee, C.W. Park, J.H. Lee, H.S. Kang, H.M. Kim, S.H. Kang, S.Y. Bang, S.K. Lee, and K.B. Shim, J. Ceram. Proc. Res. 18[2] (2017) 93-97.
  12. Z.J. Pei, S.R. Billingsley, and S. Miura, Int. J. Mach. Tool. Manufact. 39 (1999) 1103-1116. https://doi.org/10.1016/S0890-6955(98)00079-0
  13. M.T. Postek, Scanning 18 (1996) 269-274.
  14. L. Holland, Vacuum 20[5] (1970) 175-192. https://doi.org/10.1016/S0042-207X(70)80129-4
  15. D.K. Oh, S.Y. Bang, B.G. Choi, P. Maneeratanasam, S.K. Lee, J.H. Chung, J.A. Freitas Jr., and K.B. Shim, J. Cryst. Growth 356 (2012) 22-25. https://doi.org/10.1016/j.jcrysgro.2012.06.056
  16. S.K. Lee and K.B. Shim, KR Patent No. 1015453940000, (2015).
  17. B. Heying, X.H. Wu, S. Keller, Y. Li, D. Kapolnek, B.P. Keller, S.P. DenBaars, and J.S. Speck, Appl. Phys. Lett. 68[5] (1996) 643-645. https://doi.org/10.1063/1.116495
  18. S.S. Kushvaha, M. Senthil Kumar, K.K. Maurya, M.K. Dalai, and N.D. Sharma, AIP Advances 3 (2013) 092109. https://doi.org/10.1063/1.4821276
  19. A.G. Kontos, Y.S. Raptis, N.T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, Phys. Rev. B 72 (2005) 155336. https://doi.org/10.1103/PhysRevB.72.155336
  20. W. Grieshaber, E.F. Schubert, and I.D. Goepfert, J. Appl. Phys. 80[8] (1996) 4615-4620. https://doi.org/10.1063/1.363443
  21. H. Gu, G. Ren, T. Zhou, F. Tian, Y. Xu, Y. Zhang, M. Wang, Z. Zhang, D. Cai, J. Wang, and K. Xu, J. Alloys Compd. 674 (2016) 218. https://doi.org/10.1016/j.jallcom.2016.03.064
  22. L. Li, J. Yu, Z. Hao, L. Wang, J. Wang, Y. Han, H. Li, B. Xiong, C. Sun, and Y. Luo, Comput. Mater. Sci. 129 (2017) 49. https://doi.org/10.1016/j.commatsci.2016.12.017
  23. S.R. Xu, Y. Hao, J.C. Zhang, Y.R. Cao, X.W. Zhou, L.A. Yang, X.X. Ou, K. Chen, and W. Mao, J. Cryst. Growth 312 (2010) 3521-3524. https://doi.org/10.1016/j.jcrysgro.2010.09.026