DOI QR코드

DOI QR Code

Template-free preparation of TiO2 microspheres for the photocatalytic degradation of organic dyes

  • Al Ruqaishy, Mouza (Department of Chemistry, College of Science, Sultan Qaboos University) ;
  • Al Marzouqi, Faisal (Department of Chemistry, College of Science, Sultan Qaboos University) ;
  • Qi, Kezhen (Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University) ;
  • Liu, Shu-yuan (Department of Pharmacology, Shenyang Medical College) ;
  • Karthikeyan, Sreejith (Department of Physics and Nanotechnology, SRM Research Institute, SRM University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University) ;
  • Al-Kindy, Salma Mohamed Zahran (Department of Chemistry, College of Science, Sultan Qaboos University) ;
  • Kuvarega, Alex Tawanda (Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus) ;
  • Selvaraj, Rengaraj (Department of Chemistry, College of Science, Sultan Qaboos University)
  • 투고 : 2018.04.02
  • 심사 : 2018.07.18
  • 발행 : 2018.11.30

초록

$TiO_2$ microspheres were successfully synthesised by simple solution phase method by using various amount of titanium butoxide as precursor. The prepared $TiO_2$ were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance absorption spectra (UV-DRS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XRD analysis revealed that the as-synthesized $TiO_2$ microsphere poses an anatase phase. The photocatalytic degradation experiments were carried out with three different dyes, such as methylene blue, brilliant black, reactive red-120 for four hours under UV light irradiation. The results show that $TiO_2$ morphology had great influence on photocatalytic degradation of organic dyes. The experimental results of dye mineralization indicated the concentration was reduced by a high portion of up to 99% within 4 hours. On the basis of various characterization of the photocatalysts, the reactions involved to explain the photocatalytic activity enhancement due to the concentration of titanium butoxide and morphology include a better separation of photogenerated charge carriers and improved oxygen reduction inducing a higher extent of degradation of aromatics.

키워드

과제정보

연구 과제 주관 기관 : SQU-UAEU

참고문헌

  1. N. M. Mahmoodi, J. Abdi, M. Oveisi, M. A. Asli and M. Vossoughi, Mater. Res. Bull., 100, 357 (2018). https://doi.org/10.1016/j.materresbull.2017.12.033
  2. A. R. Khataee and M. B. Kasiri, J. Mol. Cat. A, 328, 8 (2010). https://doi.org/10.1016/j.molcata.2010.05.023
  3. M. C. V. M. Starling, L. A. S. Castro, R. B. P. Marcelino, M. M. D. Leao and C. C. Amorim, Environ. Sci. Pollut. Res., 24, 6222 (2017). https://doi.org/10.1007/s11356-016-6157-8
  4. F. S. Domingues, T. K. F. S. Freitas, C. A. de Almeida, R. P. de Souza, E. Ambrosio, S. M. Palacio and J. C. Garcia, Environ. Technol., 1 (2017), DOI:10.1080/09593330.2017.1418913.
  5. N. Jaafarzadeh, A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi and G. Barzegar, J. Mol. Liq., 256, 162 (2018).
  6. R. P. Souza, T. K. Freitas, F. S. Domingues, O. Pezoti, E. Ambrosio, A. M. Ferrari-Lima and J. C. Garcia, J. Photochem. Photobio. A, 329, 9 (2016). https://doi.org/10.1016/j.jphotochem.2016.06.013
  7. A. Asghar, A. A. A. Raman and W. M. A. W. Daud, J. Clean. Prod., 87, 826 (2015). https://doi.org/10.1016/j.jclepro.2014.09.010
  8. A. Touati, T. Hammedi, W. Najjar, Z. Ksibi and S. Sayadi, J. Ind. Eng. Chem., 35, 36 (2016). https://doi.org/10.1016/j.jiec.2015.12.008
  9. H. U. Farouk, A. A. A. Raman and W. M. A. W. Daud, J. Ind. Eng. Chem., 33, 11 (2016). https://doi.org/10.1016/j.jiec.2015.10.022
  10. M. E. Borges, M. Sierra, E. Cuevas, R. D. Garcia and P. Esparza, Sol. Energy, 135, 527 (2016). https://doi.org/10.1016/j.solener.2016.06.022
  11. K. M. Reza, A. S. W. Kurny and F. Gulshan, Appl. Water Sci., 7, 1569 (2017). https://doi.org/10.1007/s13201-015-0367-y
  12. D. Ariyanti, M. Maillot and W. Gao, J. Environ. Chem. Eng., 6, 539 (2018). https://doi.org/10.1016/j.jece.2017.12.031
  13. M. Behpour, R. Foulady-Dehaghi and N. Mir, Sol. Energy, 158, 636 (2017). https://doi.org/10.1016/j.solener.2017.10.034
  14. W. Zhao, X. He, Y. Peng, H. Zhang, D. Sun and X. Wang, Water Sci. Technol., 75, 1494 (2017). https://doi.org/10.2166/wst.2017.018
  15. A. Khanna and V. K. Shetty, Sol. Energy, 99, 67 (2014). https://doi.org/10.1016/j.solener.2013.10.032
  16. S. Park, W. Kim and Y. Kim, Korean J. Chem. Eng., 34, 1500 (2017). https://doi.org/10.1007/s11814-017-0034-0
  17. K. O. Hamaloglu, E. Sag, A. Bilir and A. Tuncel, Mater. Chem. Phys., 207, 359 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.065
  18. C. Wang, H. Liu, Y. Liu, G. He and C. Jiang, Appl. Surf. Sci., 319, 2 (2014). https://doi.org/10.1016/j.apsusc.2014.05.014
  19. C. J. Lin, W.-T. Yang, C.-Y. Chou and S. Y. H. Liou, Chemosphere, 152, 490 (2016). https://doi.org/10.1016/j.chemosphere.2016.03.017
  20. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  21. P. Kubelka and F. Munk, Tech. Phys., 12, 593 (1931).
  22. P. Kubelka, J. Opt. Soc. Am., 38, 448 (1948). https://doi.org/10.1364/JOSA.38.000448
  23. H. Tang, K. Prasad, R. Sanjines, P. Schmid and F. Levy, J. Appl. Phys., 75, 2042 (1994). https://doi.org/10.1063/1.356306
  24. K. M. Reddy, S. V. Manorama and A. R. Reddy, Mater. Chem. Phys., 78, 239 (2003). https://doi.org/10.1016/S0254-0584(02)00343-7
  25. J. Zhang, P. Zhou, J. Liu and J. Yu, Phys. Chem. Chem. Phys., 16, 20382 (2014). https://doi.org/10.1039/C4CP02201G
  26. B. Erdem, R. A. Hunsicker, G. W. Simmons, E. D. Sudol, V. L. Dimonie and M. S. El-Aasser, Langmuir, 17, 2664 (2001). https://doi.org/10.1021/la0015213
  27. A. R. Burke, C. R. Brown, W. C. Bowling, J. E. Glaub, D. Kapsch, C. M. Love, R. B. Whitaker and W. E. Moddeman, J. Surf. Interface Anal., 11, 353 (1988). https://doi.org/10.1002/sia.740110614
  28. H.-A. Park, S. Liu, Y. Oh, P. A. Salvador, G. S. Rohrer and M. F. Islam, ACS Nano., 11, 2150 (2017). https://doi.org/10.1021/acsnano.6b08387
  29. F. Wang, J. H. Ho, Y. Jiang and R. Amal, ACS Appl. Mater. Interf., 7, 23941 (2015). https://doi.org/10.1021/acsami.5b06287
  30. S. H. Sharif and A. R. Aldo, Ind. Eng. Chem. Res., 47, 6598 (2008). https://doi.org/10.1021/ie701770q

피인용 문헌

  1. Improving of the Photovoltaic Characteristics of Dye-Sensitized Solar Cells Using a Photoelectrode with Electrospun Porous TiO 2 Nanofibers vol.9, pp.1, 2019, https://doi.org/10.3390/nano9010095
  2. A green approach to the microwave-assisted synthesis of flower-like ZnO nanostructures for reduction of Cr(VI) vol.101, pp.1, 2018, https://doi.org/10.1080/02772248.2019.1635602
  3. Easy conversion of BiOCl plates to flowers like structure to enhance the photocatalytic degradation of endocrine disrupting compounds vol.6, pp.12, 2018, https://doi.org/10.1088/2053-1591/ab4de0
  4. Rapid photocatalytic degradation of acetaminophen and levofloxacin using g-C3N4 nanosheets under solar light irradiation vol.6, pp.12, 2019, https://doi.org/10.1088/2053-1591/ab4e4e
  5. Editorial: Functionalized Inorganic Semiconductor Nanomaterials: Characterization, Properties, and Applications vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.616728
  6. Development of TiO 2 -coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-74637-1
  7. NiP/CuO composites: Electroless plating synthesis, antibiotic photodegradation and antibacterial properties vol.267, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.129220
  8. Synthesis of Ag Loaded ZnO/BiOCl with High Photocatalytic Performance for the Removal of Antibiotic Pollutants vol.11, pp.8, 2018, https://doi.org/10.3390/cryst11080981