DOI QR코드

DOI QR Code

Sublayer assisted by hydrophilic and hydrophobic ZnO nanoparticles toward engineered osmosis process

  • Mansouri, Sina (School of Chemical Engineering, Kavosh Institute of Higher Education) ;
  • Khalili, Soodabeh (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology) ;
  • Peyravi, Majid (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology) ;
  • Jahanshahi, Mohsen (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology) ;
  • Darabi, Rezvaneh Ramezani (Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology) ;
  • Ardeshiri, Fatemeh (Institute of Nanoscience and Nanotechnology, University of Kashan) ;
  • Rad, Ali Shokuhi (Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University)
  • Received : 2017.12.31
  • Accepted : 2018.05.27
  • Published : 2018.11.30

Abstract

Hydrophilic and hydrophobic polyethersulfone (PES)-zinc oxide (ZnO) sublayers were prepared by loading of ZnO nanoparticles into PES matrix. Both porosity and hydrophilicity of the hydrophilic sublayer were increased upon addition of hydrophilic ZnO, while these were decreased for the hydrophobic sublayer. In addition, the results demonstrated that the hydrophilic membrane exhibited smaller structural parameter (S value or S parameter or S), which is beneficial for improving pure water permeability and decreasing mass transfer resistance. In contrast, a higher S parameter was obtained for the hydrophobic membrane. With a 2 M NaCl as DS and DI water as FS, the pure water flux of hydrophilic TFN0.5 membrane was increased from $21.02L/m^2h$ to $30.06L/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $14.98L/m^2h$, while the salt flux of hydrophilic membrane increased from $10.12g/m^2h$ to $17.31g/m^2h$ and decreased for hydrophobic TFN0.5 membrane to $3.12g/m^2h$. The increment in pure water permeability can be ascribed to reduction in S parameter, which resulted in reduced internal concentration polarization (ICP). The current study provides a feasible and low cost procedure to decrease the ICP in FO processes.

Keywords

References

  1. J. Heikkinen, H. Kyllonen, E. Jarvela, A. Gronroos and Ch. Y. Tang, J. Membr. Sci., 528, 147 (2017). https://doi.org/10.1016/j.memsci.2017.01.035
  2. F. Kong, H. Yang, Y. Wu, X. Wang and Y. F. Xie, J. Membr. Sci., 476, 410 (2015). https://doi.org/10.1016/j.memsci.2014.11.026
  3. D. L. Shaffer, J. R. Werber, H. Jaramillo, Sh. Lin and M. Elimelech, Desalination, 356, 271 (2015). https://doi.org/10.1016/j.desal.2014.10.031
  4. A. Zirehpour, A. Rahimpour and M. Ulbricht, J. Membr. Sci., 531, 59 (2017). https://doi.org/10.1016/j.memsci.2017.02.049
  5. Y. Cui, X. Y. Liu, T. Sh. Chung, M. Weber, C. Staudt and Ch. Maletzko, Water Res., 91, 104 (2016). https://doi.org/10.1016/j.watres.2016.01.001
  6. X. Liu, S. L. Ong and H. Y. Ng, J. Membr. Sci., 511, 40 (2016). https://doi.org/10.1016/j.memsci.2016.03.015
  7. F. Esfandian, M. Peyravi, A. A. Ghoreyshi, M. Jahanshahi and A. Sh. Rad, Arab. J. Chem (2017).
  8. M. Peyravi, M. Jahanshahi, A. Rahimpour, A. Javadi and S. Hajavi, Chem. Eng. J., 241, 155 (2014). https://doi.org/10.1016/j.cej.2013.12.024
  9. M. Khajouei, M. Peyravi and M. Jahanshahi, J. Membr. Sci. Res., 3, 2 (2017).
  10. M. Peyravi, A. Rahimpour and M. Jahanshahi, J. Membr. Sci., 423, 225 (2012).
  11. S. Morales-Torres, C. M. Esteves, J. L. Figueiredo and A. M. Silva, J. Membr. Sci., 520, 326 (2016). https://doi.org/10.1016/j.memsci.2016.07.009
  12. D. Li, Y. Yan and H. Wang, Prog. Poly. Sci., 61, 104 (2016). https://doi.org/10.1016/j.progpolymsci.2016.03.003
  13. Sh. Lin, J. Membr. Sci., 514, 176 (2016). https://doi.org/10.1016/j.memsci.2016.04.053
  14. Z. Dabaghian and A. Rahimpour, Chem. Eng. Res. Design, 104, 647 (2015). https://doi.org/10.1016/j.cherd.2015.10.008
  15. A. H. Hawari, N. Kamal and A. Altaee, Desalination, 398, 98 (2016). https://doi.org/10.1016/j.desal.2016.07.023
  16. X. Liu and H. Y. Ng, J. Membr. Sci., 469, 112 (2014). https://doi.org/10.1016/j.memsci.2014.06.037
  17. M. Park, J. J. Lee, S. Lee and J. H. Kim, J. Membr. Sci., 375, 241 (2011). https://doi.org/10.1016/j.memsci.2011.03.052
  18. Sh. Chou, R. Wang, L. Shi, Q. She, Ch. Tang and A. G. Fane, J. Membr. Sci., 389, 25 (2012). https://doi.org/10.1016/j.memsci.2011.10.002
  19. Q. Liu, J. Li, Zh. Zhou, J. Xie and J. Y. Lee, Scientific Reports, 6, 1 (2016). https://doi.org/10.1038/s41598-016-0001-8
  20. Zh. Liu, H. Yu, G. Kang, X. Jie, Y. Jin and Y. Cao, J. Membr. Sci., 497, 485 (2016). https://doi.org/10.1016/j.memsci.2015.06.052
  21. P. Xiao, L. D. Nghiem, Y. Yin, X. Li, M. Zhang, G. Chen, J. Song and T. He, J. Membr. Sci., 481, 106 (2015). https://doi.org/10.1016/j.memsci.2015.01.036
  22. Q. She, X. Jin and Ch. Y. Tang, J. Membr. Sci., 401, 262 (2012).
  23. Ch. Boo, S. Lee, M. Elimelech, Zh. Meng and S. Hong, J. Membr. Sci., 390, 277 (2012).
  24. Ch. Suh and S. Lee, J. Membr. Sci., 427, 365 (2013). https://doi.org/10.1016/j.memsci.2012.08.033
  25. M. F. Jimenez-Solomon, P. Gorgojo, M. Munoz-Ibanez and A. G. Livingston, J. Membr. Sci., 448, 102 (2013). https://doi.org/10.1016/j.memsci.2013.06.030
  26. N. Ma, J. Wei, S. Qi, Y. Zhao, Y. Gao and Ch. Y. Tang, J. Membr. Sci., 441, 54 (2013). https://doi.org/10.1016/j.memsci.2013.04.004
  27. J. Yin and B. Deng, J. Membr. Sci., 479, 256 (2015). https://doi.org/10.1016/j.memsci.2014.11.019
  28. M. Ghanbari, D. Emadzadeh, W. J. Lau, H. Riazi, D. Almasi and A. F. Ismail, Desalination, 377, 152 (2016). https://doi.org/10.1016/j.desal.2015.09.019
  29. M. Tian, Y. N. Wang, R. Wang and A. G. Fane, Desalination, 401, 142 (2017). https://doi.org/10.1016/j.desal.2016.04.003
  30. X. Feng, H. Guo, K. Patel, H. Zhou and X. Lou, Chem. Eng. J., 244, 327 (2014). https://doi.org/10.1016/j.cej.2014.01.075
  31. M. Abbasian, N. K. Aali and S. E. Shoja, J. Macromol. Sci., 50, 966 (2013). https://doi.org/10.1080/10601325.2013.813814
  32. P. Liu and T. Wang, Cur. Ap. Phy., 8, 66 (2008). https://doi.org/10.1016/j.cap.2007.05.001
  33. R. R. Darabi, M. Peyravi and M. Jahanshahi and A. A. Q. Amiri, Korean J. Chem. Eng., 34, 2311 (2017). https://doi.org/10.1007/s11814-017-0086-1
  34. M. I. Baig, P. G. Ingole, W. K. Choi, J. d. Jeon, B. Jang, J. H. Moon and H. K. Lee, Chem. Eng. J., 308, 27 (2017). https://doi.org/10.1016/j.cej.2016.09.033
  35. M. Amini, M. Jahanshahi and A. Rahimpour, J. Membr. Sci., 435, 233 (2013). https://doi.org/10.1016/j.memsci.2013.01.041
  36. N. Shafaei, M. Peyravi and M. Jahanshahi, Polym. Adv. Technol., 27, 1325 (2016).
  37. Sh. Ma, L. Shi, X. Feng, W. Yu and B. Lu, J. Shan. Uni., 12, 278 (2008). https://doi.org/10.1007/s11741-008-0316-1
  38. A. Anzlovar, Z. C. Orel and M. Zigon, Eur. Polym. J., 46, 1216 (2010). https://doi.org/10.1016/j.eurpolymj.2010.03.010
  39. S. M. Khaled, R. Sui, P. A. Charpentier and A. S. Rizkalla, Langmuir, 23, 3988 (2007). https://doi.org/10.1021/la062879n
  40. J. R. McCutcheon and M. Elimelech, J. Membr. Sci., 318, 458 (2008). https://doi.org/10.1016/j.memsci.2008.03.021
  41. A. Saffar, P. J. Carreau, A. Ajji and M. R. Kamal, J. Membr. Sci., 462, 50 (2014). https://doi.org/10.1016/j.memsci.2014.03.024
  42. M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi and A. Shockravi, Micropor. Mesopor. Mater., 160, 114 (2012). https://doi.org/10.1016/j.micromeso.2012.04.036
  43. E. L. Tian, H. Zhou, Y. W. Ren, X. Z. Wang and Sh. W. Xiong, Desalination, 347, 207 (2014). https://doi.org/10.1016/j.desal.2014.05.043
  44. M. Peyravi, A. Rahimpour and M. Jahanshahi, J. Membr. Sci., 473, 72 (2015). https://doi.org/10.1016/j.memsci.2014.08.009
  45. D. Emadzadeh, W. J. Lau and A. F. Ismail, Desalination, 330, 90 (2013). https://doi.org/10.1016/j.desal.2013.10.003
  46. N. Misdan, W. J. Lau, A. F. Ismail and T. Matsuura, Desalination, 329, 9 (2013). https://doi.org/10.1016/j.desal.2013.08.021
  47. Sh. Zhu, S. Zhao, Zh. Wang, X. Tian, M. Shi, J. Wang and Sh. Wang, J. Membr. Sci., 493, 263 (2015). https://doi.org/10.1016/j.memsci.2015.07.013
  48. Sh. Xia, L. Yao, Y. Zhao, N. Li and Y. Zheng, Chem. Eng. J., 280, 720 (2015). https://doi.org/10.1016/j.cej.2015.06.063
  49. H. Hoseinpour, M. Jahanshahi, M. Peyravi and A. Nozad, J. Ind. Eng. Chem., 46, 244 (2017). https://doi.org/10.1016/j.jiec.2016.10.036
  50. J. Wei, Ch. Qiu, Ch. Y. Tang, R. Wang and A. G. Fane, J. Membr. Sci., 372, 292 (2011). https://doi.org/10.1016/j.memsci.2011.02.013
  51. D. Emadzadeh, W. J. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura and A. F. Ismail, Chem. Eng. J., 281, 243 (2015). https://doi.org/10.1016/j.cej.2015.06.035
  52. D. Emadzadeh, W. J. Lau, T. Matsuura, A. F. Ismail and M. Rahbari-Sisakht, J. Membr. Sci., 449, 74 (2014). https://doi.org/10.1016/j.memsci.2013.08.014
  53. X. Liu and H. Y. Ng, J. Membr. Sci., 469, 112 (2014). https://doi.org/10.1016/j.memsci.2014.06.037
  54. O. Akin and F. Temelli, Desalination, 278, 387 (2011). https://doi.org/10.1016/j.desal.2011.05.053
  55. W. Kuang, Zh. Liu, G. Kang, D. Liu, M. Zhou and Y. Cao, J. Appl. Poly. Sci., 133, 1 (2016).

Cited by

  1. Highly Sensitive Formaldehyde Detection Using Well-Aligned Zinc Oxide Nanosheets Synthesized by Chemical Bath Deposition Technique vol.12, pp.2, 2018, https://doi.org/10.3390/ma12020250
  2. A hydrophilic-oleophobic chitosan/SiO2 composite membrane to enhance oil fouling resistance in membrane distillation vol.36, pp.2, 2019, https://doi.org/10.1007/s11814-018-0188-4
  3. Antibacterial dynamic membranes loaded by cephalexin/amine-functionalized SBA_15 for Pb(II) ions removal vol.36, pp.12, 2018, https://doi.org/10.1007/s11814-019-0391-y
  4. Novel thin film nanocomposite membranes incorporated with polyoxovanadate nanocluster for high water flux and antibacterial properties vol.34, pp.4, 2020, https://doi.org/10.1002/aoc.5494