DOI QR코드

DOI QR Code

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi (Department of Chemical Engineering, Faculty of Engineering, University of Tehran) ;
  • Karimi-Sabet, Javad (Material and Nuclear Fuel Research School (MNFRS), Nuclear Science and Technology Research Institute) ;
  • Hatamnejad, Ali (Department of Chemical Engineering, Faculty of Engineering, University of Tehran) ;
  • Dastbaz, Abolfazl (Department of Chemical Engineering, Faculty of Engineering, University of Tehran) ;
  • Moosavian, Mohammad Ali (Department of Chemical Engineering, Faculty of Engineering, University of Tehran)
  • Received : 2017.10.07
  • Accepted : 2018.02.23
  • Published : 2018.11.30

Abstract

RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Keywords

References

  1. R. F. Service, Desalination freshens up, Science, New York (2006).
  2. I. C. Escobar, Sustainability Sci. Eng., 2, 389 (2010).
  3. K. W. Lawson and D. R. Lloyd, J. Membr. Sci., 124, 1 (1997). https://doi.org/10.1016/S0376-7388(96)00236-0
  4. G. Amy, N. Ghaffour and Z. Li, Desalination, 401, 16 (2017). https://doi.org/10.1016/j.desal.2016.10.002
  5. Z. Ding, L. Liu and M. El-Bourawi, Desalination, 172, 27 (2005). https://doi.org/10.1016/j.desal.2004.06.195
  6. E.Curcio and E. Drioli, Sep. Purif. Reviews, 34, 35 (2005). https://doi.org/10.1081/SPM-200054951
  7. M. Khayet, Adv. Colloid Interface Sci., 164, 56 (2011). https://doi.org/10.1016/j.cis.2010.09.005
  8. D. Gonzalez, J. Amigo and F. Suarez, Renew. Sust. Energy Rev., 80, 238 (2017). https://doi.org/10.1016/j.rser.2017.05.078
  9. A. K. An, J. Guo and E. Lee, J. Membr. Sci., 525, 57 (2017). https://doi.org/10.1016/j.memsci.2016.10.028
  10. R. Schofield, A. Fane and C. Fell, J. Membr. Sci., 33, 299 (1987). https://doi.org/10.1016/S0376-7388(00)80287-2
  11. E. Karbasi, J. Karimi-Sabet and J. Mohammadi-Rovshandeh, Chem. Eng. J., 322, 667 (2017). https://doi.org/10.1016/j.cej.2017.03.031
  12. L. Eykens, K. De Sitter and C. Dotremont, Sep. Purif. Technol., 182, 36 (2017). https://doi.org/10.1016/j.seppur.2017.03.035
  13. R. Moradi, S. M. Monfared and Y. Amini, Korean J. Chem. Eng., 33, 2160 (2016). https://doi.org/10.1007/s11814-016-0081-y
  14. J. Zahirifar, J. Karimi-Sabet and M. A. Moosavian, Desalination, 428, 227 (2018). https://doi.org/10.1016/j.desal.2017.11.028
  15. M. El-Bourawi, Z. Ding and R. Ma, J. Membr. Sci., 285, 4 (2006). https://doi.org/10.1016/j.memsci.2006.08.002
  16. A. Khalifa, H. Ahmad and M. Antar, Desalination, 404, 22 (2017). https://doi.org/10.1016/j.desal.2016.10.009
  17. A. Burgoyne and M. Vahdati, Sep. Sci. Technol., 35, 1257 (2000). https://doi.org/10.1081/SS-100100224
  18. F. Lagana, G. Barbieri and E. Drioli, J. Membr. Sci., 166, 1 (2000). https://doi.org/10.1016/S0376-7388(99)00234-3
  19. B. Ashoor, S. Mansour and A. Giwa, Desalination, 398, 222 (2016). https://doi.org/10.1016/j.desal.2016.07.043
  20. F. Suarez, S. W. Tyler and A. E. Childress, Water Res., 44, 4601 (2010). https://doi.org/10.1016/j.watres.2010.05.050
  21. P. Wang, M. M. Teoh and T. S. Chung, Water Res., 45, 5489 (2011). https://doi.org/10.1016/j.watres.2011.08.012
  22. K. Y. Wang, S. W. Foo and T. S. Chung, Ind. Eng. Chem. Res., 48, 4474 (2009). https://doi.org/10.1021/ie8009704
  23. J. Phattaranawik, R. Jiraratananon and A. Fane, J. Membr. Sci., 215, 75 (2003). https://doi.org/10.1016/S0376-7388(02)00603-8
  24. Z. Wang and S. Lin, Water Res., 112, 38 (2017). https://doi.org/10.1016/j.watres.2017.01.022
  25. M. M. Teoh, T. S. Chung and Y. S. Yeo, Chem. Eng. J., 171, 684 (2011). https://doi.org/10.1016/j.cej.2011.05.020
  26. M. Khayet and T. Matsuura, Ind. Eng. Chem. Res., 40, 5710 (2001). https://doi.org/10.1021/ie010553y
  27. M. Khayet, J. Mengual and T. Matsuura, J. Membr. Sci., 252, 101 (2005). https://doi.org/10.1016/j.memsci.2004.11.022
  28. F. Liu, N. A. Hashim and Y. Liu, J. Membr. Sci., 375, 1 (2011). https://doi.org/10.1016/j.memsci.2011.03.014
  29. R. Moradi, J. Karimi-Sabet and M. Shariaty-niassar, Korean J. Chem. Eng., 33, 2953 (2016). https://doi.org/10.1007/s11814-016-0137-z
  30. K. Schneider, W. Holz and R. Wollbeck, J. Membr. Sci., 39, 25 (1998).
  31. L. Song, B. Li and K. Sirkar, Ind. Eng. Chem. Res., 46, 2307 (2007). https://doi.org/10.1021/ie0609968
  32. X. Yang, R. Wang and L. Shi, J. Membr. Sci., 369, 437 (2011). https://doi.org/10.1016/j.memsci.2010.12.020
  33. C. F. Wan, T. Yang and G. G. Lipscomb, J. Membr. Sci., 538, 96 (2017). https://doi.org/10.1016/j.memsci.2017.05.047
  34. X. Li, Y. Mo and J. Li, J. Membr. Sci., 528, 187 (2017). https://doi.org/10.1016/j.memsci.2017.01.030
  35. P. Van de Witte, P. J. Dijkstra and J. W. A. Van den berg, J. Membr. Sci., 117, 1 (1996). https://doi.org/10.1016/0376-7388(96)00088-9
  36. K. Y. Wang, T. S. Chung and M. Gryta, Chem. Eng. Sci., 63, 2587 (2008). https://doi.org/10.1016/j.ces.2008.02.020
  37. S. Bonyadi and T. S. Chung, J. Membr. Sci., 306, 134 (2007). https://doi.org/10.1016/j.memsci.2007.08.034
  38. F. Edwie and T. S. Chung, J. Membr. Sci., 421, 111 (2012).
  39. F. Edwie, M. M. Teoh and T. S. Chung, Chem. Eng. Sci., 68, 567 (2012). https://doi.org/10.1016/j.ces.2011.10.024
  40. M. Su, M. M. Teoh and K. Y. Wang, J. Membr. Sci., 364, 278 (2010). https://doi.org/10.1016/j.memsci.2010.08.028
  41. J. Zhu, L. Jiang and T. Matsuura, Chem. Eng. Sci., 137, 79 (2015). https://doi.org/10.1016/j.ces.2015.05.064
  42. J. Zuo, T. S. Chung and G. S. O’Brien, J. Membr. Sci., 523, 103 (2017). https://doi.org/10.1016/j.memsci.2016.09.030
  43. X. Feng, L. Y. Jiang and T. Matsuura, Desalination, 401, 53 (2017). https://doi.org/10.1016/j.desal.2016.07.026
  44. A. Dastbaz, J. Karimi-sabet and H. Ahadi, Desalination, 424, 62 (2017). https://doi.org/10.1016/j.desal.2017.09.030
  45. M. Khayet and T. Matsuura, Membrane distillation: principles and applications, Elsevier (2011).
  46. K. Ravikumar, K. Pakshirajan and T. Swaminathan, Chem. Eng. J., 105, 131 (2005). https://doi.org/10.1016/j.cej.2004.10.008
  47. M. Khayet, C. Cojocaru and M. D. C. Garcia-Payo, J. Membr. Sci., 35, 234 (2010).
  48. M. Khayet, C. Cojocaru and M. Essalhi, Desalination, 287, 146 (2012). https://doi.org/10.1016/j.desal.2011.06.025
  49. Z. W. Song and L. Y. Jiang, Chem. Eng. Sci., 101, 130 (2013). https://doi.org/10.1016/j.ces.2013.06.006
  50. D. Cheng, W. Gong and N. Li, Desalination, 394, 108 (2016). https://doi.org/10.1016/j.desal.2016.04.029
  51. L. Shi, R. Wang and Y. Cao, J. Membr. Sci., 305, 215 (2007). https://doi.org/10.1016/j.memsci.2007.08.012
  52. J. S. Kwak, Int. J. Machine Tools and Manufacture, 45, 327 (2005). https://doi.org/10.1016/j.ijmachtools.2004.08.007
  53. N. Aslan and Y. Cebeci, Fuel, 86, 90 (2007). https://doi.org/10.1016/j.fuel.2006.06.010
  54. A. Hadi, J. Karimi-Sabet and M. A. Moosavian, J. Supercrit. Fluids, 107, 92 (2016). https://doi.org/10.1016/j.supflu.2015.08.022
  55. M. A. Bezerra, R. E. Santelli and E. P. Oliveira, Talanta, 76, 965 (2008). https://doi.org/10.1016/j.talanta.2008.05.019
  56. A. Zaherzadeh, J. Karimi-Sabet and M. A. Moosavian, J. Supercrit. Fluids, 103, 105 (2015). https://doi.org/10.1016/j.supflu.2015.04.030
  57. P. Rana-Madaria, M. Nagarajan and C. Rajagopal, Ind. Eng. Chem. Res., 44, 6549 (2005). https://doi.org/10.1021/ie050321p
  58. S. Deshmukh and K. Li, J. Membr. Sci., 150, 75 (1998). https://doi.org/10.1016/S0376-7388(98)00196-3
  59. D. Wang, K. Li and W. Teo, J. Membr. Sci., 163, 211 (1999). https://doi.org/10.1016/S0376-7388(99)00181-7
  60. B. Wu, K. Li and W. Teo, J. Appl. Polym. Sci., 106, 1482 (2007). https://doi.org/10.1002/app.26624
  61. J. Qin and T. S. Chung, J. Membr. Sci., 157, 35 (1999). https://doi.org/10.1016/S0376-7388(98)00361-5
  62. J. Qin, J. Gu and T. S. Chung, J. Membr. Sci., 182, 57 (2001). https://doi.org/10.1016/S0376-7388(00)00552-4
  63. M. Khayet, C. Y. Feng and K. C. Khulbe, Desalination, 148, 321 (2002). https://doi.org/10.1016/S0011-9164(02)00724-5
  64. Y. Santoso, T. S. Chung and K. Y. Wang, J. Membr. Sci., 282, 383 (2006). https://doi.org/10.1016/j.memsci.2006.05.044
  65. N. Peng, T. S. Chung and K. Y. Wang, J. Membr. Sci., 318, 363 (2008). https://doi.org/10.1016/j.memsci.2008.02.063
  66. M. Gryta and M. Barancewicz, J. Membr. Sci., 358, 158 (2010). https://doi.org/10.1016/j.memsci.2010.04.044
  67. S. Bonyadi and T. S. Chung, J. Membr. Sci., 331, 66 (2009). https://doi.org/10.1016/j.memsci.2009.01.014

Cited by

  1. Surface modification of polysulfone ultrafiltration membrane by in-situ ferric chloride based redox polymerization of aniline-surface characteristics and flux analyses vol.36, pp.4, 2018, https://doi.org/10.1007/s11814-019-0233-y
  2. P (VDF‐co‐CTFE)‐g‐P2VP amphiphilic graft copolymers: Synthesis, structure, and permeation properties vol.30, pp.11, 2019, https://doi.org/10.1002/pat.4700
  3. Preparation and characterization of porous cellulose acetate with copper (II) nitrate additives for separator applications vol.37, pp.5, 2018, https://doi.org/10.1007/s11814-020-0494-5