DOI QR코드

DOI QR Code

Valorization of galactose into levulinic acid via acid catalysis

  • Kim, Hyo Seon (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 투고 : 2018.05.17
  • 심사 : 2018.07.18
  • 발행 : 2018.11.30

초록

We applied methanesulfonic acid (MSA) as a green catalyst to produce levulinic acid (LA) from monomeric sugars. To optimize reaction factors and assess the effect of reciprocal interactions, a statistical experimental design was applied. Optimized result of 40.7% LA yield was obtained under the following conditions: 60 g/L galactose, 0.4 M MSA at $188^{\circ}C$ for 26.7 min. On the other hand, 66.1% LA yield was achieved under 60 g/L fructose and 0.4 M MSA at $188^{\circ}C$ for 36 min conditions. For the effect of combined severity factor on the LA yield from galactose, the LA yield showed a peaked pattern, which was linearly increased until a CSF 3.2 and then diminished with a high CSF. Moreover, it was closely fitted to a non-linear Gaussian peak pattern with a high regression value of 0.989. These results suggest that MSA and galactose, derived from marine red macro-algae, can potentially be applied for the conversion into platform chemicals.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. J. J. Bozell and G. R. Petersen, Green Chem., 12, 539 (2010). https://doi.org/10.1039/b922014c
  2. B. Kamm, P. R. Gruber and M. Kamm, Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2010).
  3. T. Werpy and G. Petersen, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO (2004).
  4. A. Mukherjee, M.-J. Dumont and V. Raghavan, Biomass Bioenergy, 72, 143 (2015). https://doi.org/10.1016/j.biombioe.2014.11.007
  5. R. J. Putten, J. C. Waal, E. Jong, C. B. Rasrendra, H. J. Heeres and J. G. Vries, Chem. Rev., 113, 1499 (2013). https://doi.org/10.1021/cr300182k
  6. A. Morone, M. Apte and R. A. Pandey, Renew. Sust. Energy Rev., 51, 548 (2015). https://doi.org/10.1016/j.rser.2015.06.032
  7. D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes and J. R. H. Ross, in Biorefineries - Industrial Processes and Products, B. Kamm, P. R. Gruber and M. Kamm Eds., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2008).
  8. D. W. Rackemann and W. O. S. Doherty, Biofuels, Bioprod. Bioref., 5, 198 (2011). https://doi.org/10.1002/bbb.267
  9. H. Zang, S. Yu, P. Yu, H. Ding, Y. Du, Y. Yang and Y. Zhang, Carbohyd. Res., 442, 1 (2017). https://doi.org/10.1016/j.carres.2017.02.002
  10. G. T. Jeong, C. H. Ra, Y. K. Hong, J. K. Kim, I. S. Kong, S. K. Kim and D. H. Park, Bioprocess Biosyst. Eng., 38, 207 (2015). https://doi.org/10.1007/s00449-014-1259-5
  11. M. R. Park, H. S. Kim, S. K. Kim and G. T. Jeong, Fuel Process. Technol., 172, 115 (2018). https://doi.org/10.1016/j.fuproc.2017.12.016
  12. K. W. Omari, J. E. Besaw and F. M. Kerton, Green Chem., 14, 1480 (2012). https://doi.org/10.1039/c2gc35048c
  13. D. W. Rackemann, J. P. Bartley and W. O. S. Doherty, Ind. Crop. Prod., 52, 46 (2014). https://doi.org/10.1016/j.indcrop.2013.10.026
  14. Y. Wang, C. M. Pederson, T. Deng, Y. Qiao and X. Hou, Bioresour. Technol., 143, 384 (2013). https://doi.org/10.1016/j.biortech.2013.06.024
  15. M. D. N. Meinita, J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park and Y. K. Hong, J. Appl. Phycol., 24, 857 (2012). https://doi.org/10.1007/s10811-011-9705-0
  16. E. Percival, Br. Phycol. J., 14, 103 (1979). https://doi.org/10.1080/00071617900650121
  17. M. D. Gernon, M. Wu, T. Buszta and P. Janney, Green Chem., 1, 127 (1999). https://doi.org/10.1039/a900157c
  18. L. D. Mthembu, Durban University of Technology, Durban, South Africa, Master Thesis (2015).
  19. G. T. Jeong and D. H. Park, Appl. Biochem. Biotechnol., 161, 41 (2010). https://doi.org/10.1007/s12010-009-8795-5
  20. D. Scordia, S. L. Cosentino and T. W. Jeffries, Biomass Bioenerg., 59, 540 (2013). https://doi.org/10.1016/j.biombioe.2013.09.011
  21. S. B. Lee, S. K. Kim, Y. K. Hong and G. T. Jeong, Algal Res., 13, 303 (2016). https://doi.org/10.1016/j.algal.2015.12.013
  22. G. R. Akien, L. Qi and I. T. Horvath, Chem. Commun., 48, 5850 (2012). https://doi.org/10.1039/c2cc31689g
  23. A. Mija, J. C. van der Waal, J.-M. Pin, N. Guigo and E. de Jong, Constr. Build. Mater., 139, 594 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.019
  24. N. Ya’aini, N. A. S. Amin and S. Endud, Micropor. Mesopor. Mater., 171, 14 (2013). https://doi.org/10.1016/j.micromeso.2013.01.002
  25. H. Rasmussen, H. R. Sorensen and A. S. Meyer, Carbohydr. Res., 385, 45 (2014). https://doi.org/10.1016/j.carres.2013.08.029
  26. S. De, S. Dutta and B. Saha, Green Chem., 13, 2859 (2011). https://doi.org/10.1039/c1gc15550d
  27. T. S. Hansen, J. Mielby and A. Riisager, Green Chem., 13, 109 (2011). https://doi.org/10.1039/C0GC00355G
  28. X. Hu, L. Wu, Y. Wang, Y. Song, D. Mourant, R. Gunawan, M. Gholizadeh and C. Z. Li, Bioresour. Technol., 133, 469 (2013). https://doi.org/10.1016/j.biortech.2013.01.080
  29. Y. Yang, C. W. Hu and M. M. Abu-Omar, Bioresour. Technol., 116, 190 (2012). https://doi.org/10.1016/j.biortech.2012.03.126
  30. D. H. Kim, S. B. Lee, S. K. Kim, D. H. Park and G. T. Jeong, Bioenerg. Res., 9, 1155 (2016). https://doi.org/10.1007/s12155-016-9759-6
  31. H. S. Kim, S. K. Kim and G. T. Jeong, J. Ind. Eng. Chem., 63, 48 (2018). https://doi.org/10.1016/j.jiec.2018.01.038
  32. H. S. Kim, M. R. Park, S. K. Kim and G. T. Jeong, Korean J. Chem. Eng., 35, 1290 (2018). https://doi.org/10.1007/s11814-018-0035-7
  33. M. R. Park, S. K. Kim and G. T. Jeong, Algal Res., 31, 116 (2018). https://doi.org/10.1016/j.algal.2018.02.004

피인용 문헌

  1. Production of levulinic acid and ethyl levulinate from cellulosic pulp derived from the cooking of lignocellulosic biomass with active oxygen and solid alkali vol.36, pp.5, 2018, https://doi.org/10.1007/s11814-019-0254-6
  2. Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성 vol.58, pp.2, 2018, https://doi.org/10.9713/kcer.2020.58.2.266
  3. Ferric chloride를 이용한 Eucheuma spinosum으로부터 플렛폼 케미컬의 생산 vol.58, pp.2, 2018, https://doi.org/10.9713/kcer.2020.58.2.293
  4. Preparation of energy platform chemicals by hydrothermal conversion of citrus peel vol.9, pp.7, 2018, https://doi.org/10.1002/ese3.924