DOI QR코드

DOI QR Code

Sorption-enhanced reforming of tar: Influence of the preparation method of CO2 absorbent

  • Xie, Huaqing (School of Metallurgy, Northeastern University) ;
  • Zhang, Weidong (School of Metallurgy, Northeastern University) ;
  • Zhao, Xiangnan (School of Metallurgy, Northeastern University) ;
  • Chen, Hao (School of Metallurgy, Northeastern University) ;
  • Yu, Qingbo (School of Metallurgy, Northeastern University) ;
  • Qin, Qin (School of Metallurgy, Northeastern University)
  • Received : 2018.06.11
  • Accepted : 2018.07.28
  • Published : 2018.11.30

Abstract

To remove tar and produce environment-friendly $H_2$, one of the promising routes is the sorption-enhanced steam reforming (SESR) process, in which the $CO_2$ sorbent is a key element. We prepared the $CO_2$ sorbents with $Ca_{12}Al_{14}O_{33}$ as carrier with various methods. Their characterizations were examined, and the sample prepared by solgel (SG) method showed the strongest CaO and $Ca_{12}Al_{14}O_{33}$ phases and the most excellent pore structure among all the samples. Then, a thermogravimetric experiment was conducted, and the results showed that the sample prepared by sol-gel (SG) method had the best $CO_2$ adsorption capacity and excellent long-term cyclic stability. Finally, the sorbent was used into the steam reforming experiments of tar. Under the action of the sorbent, the reforming reaction was enhanced in-situ, with the $H_2$ yield and concentration improved obviously, and especially, $H_2$ concentration can reach over 98.85%.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities, Doctoral Scientific Research Foundation of Liaoning Province

References

  1. N. B. Gao, S. Liu, Y. Han, C. Xing and A. M. Li, Int. J. Hydrogen Energy, 40, 7983 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.050
  2. C. P. B. Quitete, R. C. P. Bittencourt and M. M. V. M. Souza, Appl. Catal. A-Gen., 478, 234 (2014). https://doi.org/10.1016/j.apcata.2014.04.019
  3. J. Yang, X. Wang, L. Li, K. Shen, X. Lu and W. Ding, Appl. Catal. B Enviorn., 96, 232 (2010). https://doi.org/10.1016/j.apcatb.2010.02.026
  4. H. Q. Xie, Q. B. Yu, J. R. Zhang, J. L. Liu, Z. L. Zuo, J. L. Liu and Q. Qin, Environ. Prog. Sust. Energy, 36, 729 (2017). https://doi.org/10.1002/ep.12509
  5. H. Q. Xie, Q. B. Yu, Z. L. Zuo, J. R. Zhang, Z. C. Han and Q. Qin, J. Therm. Anal. Calorim., 126, 1621 (2016). https://doi.org/10.1007/s10973-016-5638-9
  6. B. Yue, X. Wang, X. Ai, J. Yang, L. Li, X. Lu and W. Ding, Fuel Process. Technol., 91, 1098 (2010). https://doi.org/10.1016/j.fuproc.2010.03.020
  7. J. L. Colby, T. Wang and L. D. Schmidt, Energy Fuels, 24, 1341 (2010). https://doi.org/10.1021/ef901033d
  8. R. Zhang, Y. Wang and R. C. Brown, Energy Convers. Manage., 48, 68 (2007). https://doi.org/10.1016/j.enconman.2006.05.001
  9. H. Q. Xie, J. R. Zhang, Q. B. Yu, Z. L. Zuo, J. L. Liu and Q. Qin, Energy Fuels, 30, 2336 (2016). https://doi.org/10.1021/acs.energyfuels.5b02551
  10. C. Li, D. Hirabayashi and K. Suzuki, Fuel Process. Technol., 90, 790 (2009). https://doi.org/10.1016/j.fuproc.2009.02.007
  11. T. Furusawa and A. Tsutsumi, Appl. Catal. A-Gen., 278, 195 (2005). https://doi.org/10.1016/j.apcata.2004.09.034
  12. D. Swierczynski, C. Courson and A. Kiennemann, Chem. Eng. Process.: Process Intensif., 47, 508 (2008). https://doi.org/10.1016/j.cep.2007.01.012
  13. W. B. Widayatno, G. Guan, J. Rizkiana, X. Hao, Z. Wang, C. Samart and A. Abudula, Fuel, 132, 204 (2014). https://doi.org/10.1016/j.fuel.2014.04.089
  14. J. Yang, X. G. Wang, L. Li, K. Shen, X. G. Lu and W. Z. Ding, Chem. J. Chinese Univ., 31, 1841 (2010).
  15. H. Q. Xie, Q. B. Yu, Z. L. Zuo, Z. C. Han, X. Yao and Q. Qin, Int. J. Hydrogen Energy, 41, 2345 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.156
  16. Z. Yang, Y. Zhang, W. Ding, Y. Zhang, P. Shen, Y. Zhou, Y. Liu, S. Huang and X. Lu, J. Nat. Gas Chem., 18, 407 (2009). https://doi.org/10.1016/S1003-9953(08)60131-0
  17. H. Q. Xie, Q. B. Yu, X. Yao, W. J. Duan, Z. L. Zuo and Q. Qin, J. Energy Chem., 24, 299 (2015). https://doi.org/10.1016/S2095-4956(15)60315-1
  18. C. Li, D. Hirabayashi and K. Suzuki, Appl. Catal. B Enviorn., 88, 351 (2009). https://doi.org/10.1016/j.apcatb.2008.11.004
  19. B. L. Dou, C. Wang, Y. C. Song, H. S. Chen, B. Jiang, M. J. Yang and Y. J. Xu, Renew. Sust. Energy Rev., 53, 536 ( 2016). https://doi.org/10.1016/j.rser.2015.08.068
  20. A. L. Ortiz and D. P. Harrison, Ind. Eng. Chem. Res., 40, 5102 (2001). https://doi.org/10.1021/ie001009c
  21. C. S. Martavaltzi and A. A. Lemonidou, Micropor. Mesopor. Mater., 110, 119 (2008). https://doi.org/10.1016/j.micromeso.2007.10.006
  22. C. M. Kinoshita and S. Q. Turn, Int. J. Hydrogen Energy, 28, 1065 (2003).
  23. H. Q. Xie, Q. B. Yu, M. Q. Wei, W. J. Duan, X. Yao, Q. Qin and Z. L. Zuo, Int. J. Hydrogen Energy, 40, 142 (2015).
  24. H. Q. Xie, Q. B. Yu, H. Lu, Y. Y. Zhang, J. R. Zhang and Q. Qin, Int. J. Hydrogen Energy, 42, 28718 (2017). https://doi.org/10.1016/j.ijhydene.2017.09.155
  25. I. Zamboni, C. Courson and A. Kiennemann, Catal. Today, 176, 197 (2011). https://doi.org/10.1016/j.cattod.2011.01.014
  26. J. Blamey, E. J. Anthony, J. Wang and P. S. Fennell, Prog. Energy Combust. Sci., 36, 260 (2010). https://doi.org/10.1016/j.pecs.2009.10.001
  27. M. M. Xie, Z. M. Zhou, Y. Qi, Z. M. Cheng and W. K. Yuan, Chem. Eng. J., 207-208, 142 (2012). https://doi.org/10.1016/j.cej.2012.06.032
  28. Z. M. Zhou, Y. Qi, M. M. Xie, Z. M. Cheng and W. K. Yuan, Chem. Eng. Sci., 74, 172 (2012). https://doi.org/10.1016/j.ces.2012.02.042
  29. C. S. Martavaltzi and A. A. Lemonidou, Ind. Eng. Chem. Res., 47, 9537 (2008). https://doi.org/10.1021/ie800882d
  30. E. C. Vagia and A. A. Lemonidou, Appl. Catal. A: Gen., 351, 111 (2008). https://doi.org/10.1016/j.apcata.2008.09.007
  31. F. Chen, Y. R. Hong, J. L. Sun and J. L. Bu, J. Univ. Sci. Technol. Beijing, 13, 82 (2006). https://doi.org/10.1016/S1005-8850(06)60019-4
  32. Z. S. Li, N. S. Cai, Y. Y. Huang and H. J. Han, Energy Fuels, 9, 1447 (2005).
  33. L. Gong, Z. Lin, S. Ning, J. Sun, J. Shen, Y. Torimoto and Q. Li, Mater. Lett., 64, 1322 (2010). https://doi.org/10.1016/j.matlet.2010.03.023
  34. I. Zamboni, C. Courson and A. Kiennemann, Catal. Today, 176, 197 (2011). https://doi.org/10.1016/j.cattod.2011.01.014

Cited by

  1. Enhanced Reforming of Tar Based on Double-Effect Ni/CaO-Ca12Al14O33 Catalysts: Modified by Ce, Mg, and Fe vol.9, pp.None, 2021, https://doi.org/10.3389/fenrg.2021.729919
  2. A review of CO2 sorbents for promoting hydrogen production in the sorption-enhanced steam reforming process vol.46, pp.45, 2018, https://doi.org/10.1016/j.ijhydene.2021.01.206