References
- R.P. Agarwal, D. O'Regan, and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79.
- R.P. Agarwal, D. O'Regan, and D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Series: Topological Fixed Point Theory and Its Applications, 6, Springer, New York, 2009.
- E. Allevi, A. Gnudi, and I.V. Konnov, Generalized vector variational inequalities over product sets, Nonlinear Anal. 47 (2001), 573-582. https://doi.org/10.1016/S0362-546X(01)00202-4
- Q.H. Ansari, S. Schaible, and J.C. Yao, System of vector equilibrium problems and its applications, J. Optim. Theory Appl. 107 (2000), 547-557. https://doi.org/10.1023/A:1026495115191
- Q.H. Ansari and J.C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Australian Math. Soc. 59 (1999), 433-442. https://doi.org/10.1017/S0004972700033116
- M. Bianchi, Pseudo P-monotone operators and variational inequalities, Tech. Rep. 6, Istituto di econometria e Matematica per le Decisioni Economiche, Universita Cattolica del Sacro Cuore, Milan, Italy, 1993.
- S.S. Chang, H.W.J. Lee, and C.K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007), 329-334. https://doi.org/10.1016/j.aml.2006.04.017
- Y.J. Cho, Y.P. Fang, N.J. Huang, and H.J. Hwang, Algorithms for systems of nonlinear variational inequalities, J. Korean Math. Soc. 41 (2004), 489-499. https://doi.org/10.4134/JKMS.2004.41.3.489
- G. Cohen and F. Chaplais, Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl. 59 (1988), 369-390. https://doi.org/10.1007/BF00940305
- X.P. Ding, Generalized quasi-variational-like inclusions with nonconvex functionals, Appl. Math. Comput. 122 (2001), 267-282.
- X.P. Ding and C.L. Luo, Perturbed proximal point algorithms for general quasi-variationallike inclusions, J. Comput. Appl. Math. 113 (2000), 153-165. https://doi.org/10.1016/S0377-0427(99)00250-2
- Y.P. Fang, N.J. Huang, Y.J. Cao, and S.M. Kang, Stable iterative algorithms for a class of general nonlinear variational inequalities, Adv. Nonlinear Var. Inequal. 5 (2002), 1-9.
- K. Guo, Y. Jiang, and S.Q. Feng, A parallel resolvent method for solving a system of nonlinear mixed variational inequalities, J. Inequal. Appl. 2013 (2013), Paper No. 509, 9 pages. https://doi.org/10.1186/1029-242X-2013-9
- Z. He and F. Gu, Generalized system for relaxed cocoercive mixed variational inequalities in Hilbert spaces, Appl. Math. Comput. 214 (2009), 26-30.
-
Z.Y. Huang and M.A. Noor, An explicit projection method for a system of nonlinear variational inequalities with different (
${\gamma}$ , r)-cocoercive mappings, Appl. Math. Comput. 190 (2007), 356-361. - S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- G. Kassay and J. Kolumban, System of multi-valued variational inequalities, Publ. Math. Debrecen 54 (1999), 267-279.
- J.K. Kim and D.S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11 (2004), 235-243.
- D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic press, New York, 1980.
- V. Kumar, A. Latif, A. Rafiq, and N. Hussain, S-iteration process for quasi-contractive mappings, J. Ineqal. Appl. 2013 (2013), Paper No. 206, 15 pages. https://doi.org/10.1186/1029-242X-2013-15
- W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- P. Narin, A resolvent operator technique for approximate solving of generalized system mixed variational inequality and fixed point problems, Appl. Math. Lett. 23 (2010), 440-445. https://doi.org/10.1016/j.aml.2009.12.001
- M.A. Noor, Nonconvex functions and variational inequalities, J. Optim. Theory Appl. 87 (1995), 615-630. https://doi.org/10.1007/BF02192137
- J.S. Pang, Asymmetric variational inequality problems over product sets: applications and iterative methods, Math. Program. 31 (1985), 206-219. https://doi.org/10.1007/BF02591749
-
R. Pant and R. Shukla, Approximating fixed points of generalized
${\alpha}$ -nonexpansive mappings in Banach spaces, Numerical Funct. Anal. Optim. 38 (2017), 248-266. https://doi.org/10.1080/01630563.2016.1276075 - E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210.
- D.R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), 187-204.
- D.R. Sahu, Altering points and applications, Nonlinear Stud. 21 (2014), 349-365.
- D.R. Sahu, S.M. Kang, and A. Kumar, Convergence analysis of parallel S-iteration process for system of generalized variational inequalities, J. Function Spaces 2017 (2017), Article ID 5847096, 10 pages.
- D.R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 6012-6023. https://doi.org/10.1016/j.na.2011.05.078
- D.R. Sahu, V. Sagar, and K.K. Singh, Convergence of generalized Newton method using S-operator in Hilbert spaces, In: Algebra and Analysis: Theory and Applications, Narosa Publishing House Pvt. Ltd., New Delhi, India, 2015.
- D.R. Sahu, K.K. Singh, and V.K. Singh, S-iteration process of Newton-like and applications, In: Algebra and Analysis: Theory and Applications, Narosa Publishing House Pvt. Ltd., New Delhi, India, 2015.
- D.R. Sahu, J.C. Yao, V.K. Singh, and S. Kumar, Semilocal convergence analysis of S-iteration process of Newton-Kantorovich like in Banach spaces, J. Optim. Theory Appl. 172 (2017), 102-127. https://doi.org/10.1007/s10957-016-1031-x
- G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
- R. Suparatulatorn, W. Cholamjiak, and S. Suantai, A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numer. Algor. 77 (2018), 479-490. https://doi.org/10.1007/s11075-017-0324-y
- R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line 3 (1999), 65-68.
- R.U. Verma, Projection methods, algorithms, and a new system of nonlinear variational inequalities, Comput. Math. Appl. 41 (2001), 1025-1031. https://doi.org/10.1016/S0898-1221(00)00336-9
- R.U. Verma, Iterative algorithms and a new system of nonlinear quasi-variational inequalities, Adv. Nonlinear Var. Ineqal. 4 (2001), 117-124.
- R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (2005), 1286-1292. https://doi.org/10.1016/j.aml.2005.02.026
- R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004), 203-210. https://doi.org/10.1023/B:JOTA.0000026271.19947.05
- B. Wan and X. Zhan, A proximal point algorithm for a system of generalized mixed variational inequalities, J. Syst. Sci. Complex 25 (2012), 964-972. https://doi.org/10.1007/s11424-012-0157-7