References
- K. Abbaoui and Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Modelling, 20, 9 (1994), 69-73. https://doi.org/10.1016/0895-7177(94)00163-4
- G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 2 (1988), 501-544. https://doi.org/10.1016/0022-247X(88)90170-9
- S. Alkan and V. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of fractional order, Tbilisi Mathematical Journal, 10, 2 (2017), 1-13.
- M. AL-Smadi and G. Gumah, On the homotopy analysis method for fractional SEIR epidemic model, Research J. Appl. Sci. Engrg. Technol., 7, 18 (2014), 3809-3820.
- M. Bani Issa, A. Hamoud, K. Ghadle and Giniswamy, Hybrid method for solving nonlinear Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci. 7, 4 (2017), 625-641.
- A. Hamoud and K. Ghadle, The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations, Korean J. Math., 25, 3 (2017), 323-334. https://doi.org/10.11568/KJM.2017.25.3.323
- A. Hamoud and K. Ghadle, On the numerical solution of nonlinear Volterra-Fredholm integral equations by variational iteration method, Int. J. Adv. Sci. Tech. Research, 3 (2016), 45-51.
- A. Hamoud and K. Ghadle, The combined modified Laplace with Adomian decomposition method for solving the nonlinear Volterra-Fredholm integro-differential equations, J. Korean Soc. Ind. Appl. Math., 21 (2017), 17-28.
- A. Hamoud and K. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm integral equations, J. Indian Math. Soc., 85, (1-2) (2018), 52-69.
- A. Hamoud and K. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations, J. Math. Model., 6, 1 (2018), 91-104.
- A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. Elsevier, Amsterdam, 204, 2006.
- V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Analysis: Theory, Methods and Appl. 69, 10 (2008), 3337-3343.
- X. Ma and C. Huang, Numerical solution of fractional integro-differential equations by a hybrid collocation method, Appl. Math. Comput., 219, 12 (2013), 6750-6760. https://doi.org/10.1016/j.amc.2012.12.072
- R. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. Appl. Math. Mech., 4, 2 (2008), 87-94.
- S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.
- A.M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput. 102 (1999), 77-86.
- C. Yang and J. Hou, Numerical solution of integro-differential equations of fractional order by Laplace decomposition method, Wseas Trans. Math., 12, 12 (2013), 1173-2880.
- X. Zhang, B. Tang, and Y. He, Homotopy analysis method for higher-order fractional integro-differential equations, Comput. Math. Appl., 62, 8 (2011), 3194-3203. https://doi.org/10.1016/j.camwa.2011.08.032
- Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 6, 2014.
- M. Zurigat, S. Momani and A. Alawneh, Homotopy analysis method for systems of fractional integro-differential equations, Neur. Parallel Sci. Comput., 17, (2009), 169-186.