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ABSTRACT. This paper successfully applies the modified Adomian decomposition method to
find the approximate solutions of the Caputo fractional integro-differential equations. The re-
liability of the method and reduction in the size of the computational work give this method a
wider applicability. Also, the behavior of the solution can be formally determined by analytical
approximation. Moreover, we proved the existence and uniqueness results and convergence of
the solution. Finally, an example is included to demonstrate the validity and applicability of the
proposed technique.

1. INTRODUCTION

In this article, we consider Caputo fractional integro-differential equation of the form:

cDαu(x) = a(x)u(x) +

∫ x

0
K(x, t)F (u(t))dt+ g(x), (1.1)

with the initial condition
u(0) = u0, (1.2)

where cDα is the Caputo’s fractional derivative, 0 < α ≤ 1 and u : J −→ R, where J = [0, 1]
is the continuous function which has to be determined, a, g : J −→ R and K : J × J −→ R
are continuous functions. F : R −→ R is Lipschitz continuous functions. The modified de-
composition method was introduced by Wazwaz [16]. In recent years, many authors focus on
the development of numerical and analytical techniques for fractional integro-differential equa-
tions. For instance, we can remember the following works. Al-Samadi and Gumah [4] applied
the homotopy analysis method for fractional SEIR epidemic model, Zurigat et al. [20] ap-
plied HAM for system of fractional integro-differential equations. Yang and Hou [17] applied
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the Laplace decomposition method to solve the fractional integro-differential equations, Mittal
and Nigam [14] applied the Adomian decomposition method to approximate solutions for frac-
tional integro-differential equations, and Ma and Huang [13] applied hybrid collocation method
to study integro-differential equations of fractional order. Moreover, properties of the fractional
integro-differential equations have been studied by several authors [4, 18, 20]. The fractional
integro-differential equations have attracted much more interest of mathematicians and physi-
cists which provides an efficiency for the description of many practical dynamical arising in
engineering and scientific disciplines such as, physics, biology, electrochemistry, chemistry,
economy, electromagnetic, control theory and viscoelasticity [3, 5, 6, 7, 8, 9, 10, 13, 14, 17].

The main objective of the present paper is to study the behavior of the solution that can be
formally determined by analytical approximated method as the modified Adomian decompo-
sition method. Moreover, we proved the existence, uniqueness results and convergence of the
solution of the Caputo fractional integro-differential equation.

The rest of the paper is organized as follows: In Section 2, some preliminaries and basic
definitions related to fractional calculus are recalled. In Section 3, modified Adomian decom-
position method is constructed for solving Caputo fractional integro-differential equations. In
Section 4, the existence and uniqueness results and convergence of the solution have been
proved. In Section 5, the analytical example is presented to illustrate the accuracy of this
method. Finally, we will give a report on our paper and a brief conclusion is given in Section
6.

2. PRELIMINARIES

In this section, we present some required notations, definitions and some theorems which
are used Throughout this paper [12, 15, 19].

Definition 1. (Riemann-Liouville fractional integral). The Riemann-Liouville fractional
integral of order α > 0 of a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0, α ∈ R+,

J0f(x) = f(x),

where R+ is the set of positive real numbers.

Definition 2. (Caputo fractional derivative). The fractional derivative of f(x) in the Caputo
sense is defined by

cDα
xf(x) = Jm−αDmf(x)

=


1

Γ(m−α)

∫ x
0 (x− t)m−α−1 d

mf(t)
dtm dt, m− 1 < α < m,

dmf(x)
dxm , α = m, m ∈ N,

where the parameter α is the order of the derivative and is allowed to be real or even complex.
In this paper, only real and positive α will be considered.
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Hence, we have the following properties:

(1) JαJvf = Jα+vf, α, v > 0.

(2) Jαxβ = Γ(β+1)
Γ(β+α+1)x

β+α,

(3) Dαxβ = Γ(β+1)
Γ(β−α+1)x

β−α, α > 0, β > −1, x > 0.

(4) JαDαf(x) = f(x)−
∑m−1

k=0 f
(k)(0+)x

k

k! , x > 0, m− 1 < α ≤ m.

Definition 3. (Riemann-Liouville fractional derivative). The Riemann-Liouville fractional
derivative of order α > 0 is normally defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (2.1)

Theorem 2.1. [19] (Banach contraction principle). Let (X, d) be a complete metric space,
then each contraction mapping T : X −→ X has a unique fixed point x of T inX i.e. Tx = x.

Theorem 2.2. [11] (Schauder’s fixed point theorem). Let X be a Banach space and let A a
convex, closed subset of X . If T : A −→ A be the map such that the set {Tu : u ∈ A} is
relatively compact in X (or T is continuous and completely continouous). Then T has at least
one fixed point u∗ ∈ A : Tu∗ = u∗.

3. MODIFIED ADOMIAN DECOMPOSITION METHOD

Consider the equation (1.1) with the initial condition (1.2) where cDα is the operator defined
as (2.1). Operating with Jα on both sides of the equation (1.1) we get

u(x) = u0 + Jα

(
a(x)u(x) +

∫ x

0
K(x, t)F (u(t))dt+ g(x)

)
Adomian’s method defines the solution u(x) by the series

u =
∞∑
n=0

un, (3.1)

and the nonlinear function F is decomposed as

F =

∞∑
n=0

An, (3.2)

where An are the Adomian polynomials given by

An =
1

n!

[ dn
dϕn

(F
n∑

i=0

ϕiui)
]
ϕ=0

,
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The Adomian polynomials were introduced in [1, 2, 5] as:

A0 = F (u0),

A1 = u1F
′
(u0),

A2 = u2F
′
(u0) +

1

2
u21F

′′
(u0),

A3 = u3F
′
(u0) + u1u2F

′′
(u0) +

1

3
u31F

′′′
(u0),

...

The components u0, u1, u2, ... are determined recursively by

u0(x) = u0 + Jαg(x),

uk+1(x) = Jα (a(x)uk(x)) + Jα

(∫ x

0
K(x, t)Akdt

)
.

Having defined the components u0, u1, u2, · · · , the solution u in a series form defined by
(3.1) follows immediately. It is important to note that the decomposition method suggests that
the 0th component u0 be defined by the initial conditions and the function g(x) as described
above. The other components namely u1, u2, · · · , are derived recurrently.

The modified decomposition method was introduced by Wazwaz [16]. This method is based
on the assumption that the function Jαg(x) = R(x) can be divided into two parts, namely
R1(x) and R2(x). Under this assumption we set

R(x) = R1(x) +R2(x).

We apply this decomposition when the function R(x) consists of several parts and can be
decomposed into two different parts [1, 2, 9, 16]. In this case, R(x) is usually a summation of
a polynomial and trigonometric or transcendental functions. A proper choice for the part R1 is
important. For the method to be more efficient, we select R1 as one term of R(x) or at least
a number of terms if possible and R2 consists of the remaining terms of R(x). In comparison
with the standard decomposition method, the MADM minimizes the size of calculations and
the cost of com putational operations in the algorithm. Both standard and modified decompo-
sition methods are reliable for solving linear or nonlinear problems such as Volterra-Fredholm
integro-differential equations, but in order to decrease the complexity of the algorithm and
simplify the calculations we prefer to use the MADM. The MADM will accelerate the rapid
convergence of the series solution in comparison with the standard Adomian decomposition
method. The modified technique may give the exact solution for equations without the neces-
sity to find the Adomian polynomials. We refer the reader to [16] for more details about the
MADM. Accordingly, a slight variation was proposed only on the components u0 and u1. The
suggestion was that only the part R1 is assigned to the component u0, whereas the remaining
part R2 is combined with the other terms to define u1. Consequently, the following modified
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recursive relation was developed:

u0(x) = u0 +R1(x),

u1(x) = R2(x) + Jα (a(x)u0(x)) + Jα

(∫ x

0
K(x, t)A0dt

)
.

...

uk+1(x) = Jα (a(x)uk(x)) + Jα

(∫ x

0
K(x, t)Akdt

)
, k ≥ 1.

4. MAIN RESULTS

In this section, we shall give an existence and uniqueness results of Eq. (1.1), with the
initial condition (1.2) and prove it. Before starting and proving the main results, we introduce
the following hypotheses:

(H1): The two functions a, g : J → R are continuous.
(H2): There exists a functionK∗ ∈ C(D,R+), the set of all positive function continuous

on D = {(x, t) ∈ R× R : 0 ≤ t ≤ x ≤ 1} such that

K∗ = sup
x,t∈[0,1]

∫ x
0 |K(x, t)| dt <∞,

(H3): There exists a constant LF > 0 such that, for any u1, u2 ∈ C(J,R)

|F (u1(x))− F (u2(x))| ≤ LF |u1 − u2|

Lemma 1. If u0(x) ∈ C(J,R), then u(x) ∈ C(J,R+) is a solution of the problem (1.1)−(1.2)
iff u satisfying

u(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u(s)ds+

1

Γ(α)

∫ x

0
(x− s)α−1

×
(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds+

1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds,

for x ∈ J.

Now, we will study the existence result by means of Schauder’s fixed point theorem.

Theorem 4.1. Assume that F is continuous functions and (H1), (H2) hold, If

∥a∥∞
Γ(α+ 1)

< 1. (4.1)

Then there exists at least a solution u(x) ∈ C(J,R) to problem (1.1)− (1.2).
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Proof. Let the operator T : C(J,R) → C(J,R) be defined by

(Tu)(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u(s)ds+

1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds,

Firstly, we prove that the operator T is completely continuous.
(1) We show that T is continuous.
Let un be a sequence such that un → u in C(J,R). Then for each un, u ∈ C(J,R) and for

any x ∈ J we have

|(Tun)(x)− (Tu)(x)|

≤ 1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |un(s)− u(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
|K(s, τ)| |F (un(τ))− F (u(τ))| dτ

)
ds

≤ 1

Γ(α)

∫ x

0
(x− s)α−1sup

s∈J
|a(s)| sup

s∈J
|un(s)− u(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(
sup
s,τ∈J

∫ τ

0
|K(s, τ)| sup

τ∈J
|F (un(τ))− F (u(τ))| dτ

)
ds

≤ ∥a∥∞ ∥un(.)− u(.)∥∞
1

Γ(α)

∫ x

0
(x− s)α−1ds

+K∗ ∥F (un(.))− F (u(.))∥∞
1

Γ(α)

∫ x

0
(x− s)α−1ds.

Since
∫ x
0 (x − s)α−1ds is bounded, lim

n→∞
un(x) = u(x) and F is continuous functions, we

conclude that ∥Tun − Tu∥∞ → 0 as n→ ∞, thus, T is continuous on C(J,R).
(2) We verify that T maps bounded sets into bounded sets in C(J,R).
Indeed, just we show that for any λ > 0 there exists a positive constant ℓ such that for each

u ∈ Bλ = {u ∈ C(J,R) : ∥u∥∞ ≤ λ}, one has ∥Tu∥∞ ≤ ℓ. Let µ = sup
(u)∈J×[0,λ]

F (u(x)) + 1.

and for any u ∈ Br and for each x ∈ J, we have

|(Tu)(x)|

= |u0|+
1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |u(s)| ds+ 1

Γ(α)

∫ x

0
(x− s)α−1 |g(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds
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≤ |u0|+ ∥u∥∞ ∥a∥∞
xα

Γ(α+ 1)
+ ∥g∥∞

xα

Γ(α+ 1)
+

K∗µxα

Γ(α+ 1)

≤
(
|u0|+

∥a∥∞ λ+ ∥g∥∞ +K∗µ

Γ(α+ 1)

)
: = ℓ.

Therefore, ∥Tu∥ ≤ ℓ for every u ∈ Br, which implies that TBr ⊂ Bℓ.
(3) We examine that T maps bounded sets into equicontinuous sets of C(J,R).
Let Bλ is defined as in (2) and for each u ∈ Bλ, x1, x2 ∈ [0, 1], with x1 < x2 we have

|(Tu)(x2)− (Tu)(x1)|

≤ 1

Γ(α)

∣∣∣∣∫ x2

0
(x2 − s)α−1a(s)u(s)ds−

∫ x1

0
(x1 − s)α−1a(s)u(s)ds

∣∣∣∣
+

1

Γ(α)

∣∣∣ ∫ x2

0
(x2 − s)α−1g(s)ds−

∫ x1

0
(x1 − s)α−1g(s)ds

∣∣∣
+

1

Γ(α)

∣∣∣ ∫ x2

0
(x2 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds

−
∫ x1

0
(x1 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds
∣∣∣

=
1

Γ(α)

∣∣∣ ∫ x2

0
(x2 − s)α−1a(s)u(s)ds−

∫ x1

0
(x2 − s)α−1a(s)u(s)ds

+

∫ x1

0
(x2 − s)α−1a(s)u(s)ds−

∫ x1

0
(x1 − s)α−1a(s)u(s)ds

∣∣∣
+

1

Γ(α)

∣∣∣ ∫ x2

0
(x2 − s)α−1g(s)ds−

∫ x1

0
(x2 − s)α−1g(s)ds

+

∫ x1

0
(x2 − s)α−1g(s)ds−

∫ x1

0
(x1 − s)α−1g(s)ds

∣∣∣
+

1

Γ(α)

∣∣∣ ∫ x2

0
(x2 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds

−
∫ x1

0
(x2 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds

+

∫ x1

0
(x2 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds

−
∫ x1

0
(x1 − s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds
∣∣∣.
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Consequently,

|(Tu)(x2)− (Tu)(x1)|

≤ 1

Γ(α)

(∫ x2

x1

(x2 − s)α−1 |a(s)| |u(s)| ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |a(s)| |u(s)| ds

)
+

1

Γ(α)

(∫ x2

x1

(x2 − s)α−1 |g(s)| ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |g(s)| ds

)
+

1

Γ(α)

(∫ x2

x1

(x2 − s)α−1
(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1

(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds
)

= I1 + I2 + I3,

where

I1 =
1

Γ(α)

(∫ x2

x1

(x2 − s)α−1 |a(s)| |u(s)| ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |a(s)| |u(s)| ds

)
≤ (x2 − x1)

α

Γ(α+ 1)
∥a∥∞ λ+

xα1
Γ(α+ 1)

∥a∥∞ λ+
(x2 − x1)

α

Γ(α+ 1)
∥a∥∞ λ− xα2

Γ(α+ 1)
∥a∥∞ λ

=
∥a∥∞ λ

Γ(α+ 1)
(2 (x2 − x1)

α + (xα1 − xα2 ))

≤
∥a∥∞ λ

Γ(α+ 1)
2 (x2 − x1)

α , (4.2)

I2 =
1

Γ(α)

(∫ x2

x1

(x2 − s)α−1 |g(s)| ds+
∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |g(s)| ds

)
≤ (x2 − x1)

α

Γ(α+ 1)
∥g∥∞ +

xα1
Γ(α+ 1)

∥g∥∞ +
(x2 − x1)

α

Γ(α+ 1)
∥g∥∞ − xα2

Γ(α+ 1)
∥g∥∞

=
∥g∥∞

Γ(α+ 1)
(2 (x2 − x1)

α + (xα1 − xα2 ))

≤
∥g∥∞

Γ(α+ 1)
2 (x2 − x1)

α , (4.3)
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and

I3 =
1

Γ(α)

∫ x2

x1

(x2 − s)α−1

(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1

(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds

≤ (K∗µ)

Γ(α+ 1)

(
2 (x2 − x1)

α + (xα1 − xα2 )
)

≤ (K∗µ)

Γ(α+ 1)
2 (x2 − x1)

α , (4.4)

we can conclude the right-hand side of (4.2), (4.3) and (4.4) is independently of u ∈ Bλ and
tends to zero as x2 − x1 → 0. This leads to |(Tu)(x2)− (Tu)(x1)| → 0 as x2 → x1. i.e. the
set {TBλ} is equicontinuous. From I1 to I3 together with the Arzela–Ascoli theorem, we can
conclude that T : C(J,R) → C(J,R) is completely continuous.

Finally, we need to investigate that there exists a closed convex bounded subset B
λ̃
= {u ∈

C(J,R) : ∥u∥∞ ≤ λ̃} such that TB
λ̃
⊆ B

λ̃
. For each positive integer λ̃, then B

λ̃
is clearly

closed, convex and bounded of C(J,R). We claim that there exists a positive integer ϵ such
that TBϵ ⊆ Bϵ. If this property is false, then for every positive integer λ̃, there exists u

λ̃
∈ B

λ̃

such that (Tu
λ̃
) /∈ TB

λ̃
, i.e.

∥∥Tu
λ̃
(t)
∥∥
∞ > λ̃ for some x

λ̃
∈ J where x

λ̃
denotes x depending

on λ̃. But by using the previous hypotheses we have

≤ |u0|+ ∥u∥∞ ∥a∥∞
tα

Γ(α+ 1)
+ ∥g∥∞

tα

Γ(α+ 1)
+

K∗µxα

Γ(α+ 1)

≤
(
|u0|+

∥a∥∞ λ+ ∥g∥∞ +K∗µ

Γ(α+ 1)

)
λ̃ <

∥∥Tu
λ̃

∥∥
∞

= sup
x∈J

∣∣(Tu
λ̃
)(x)

∣∣
≤ sup

x∈J

{
|u0|+

∣∣∣∣ 1

Γ(α)

∫ x

0
(x− s)α−1a(s) |u(s)| ds

∣∣∣∣+ ∣∣∣∣ 1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds

∣∣∣∣
+

1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
|K(s, τ)| |F (u(τ))| dτ

)
ds
}
ds

≤ sup
x∈J

{
|u0|+ ∥u∥∞ ∥a∥∞

xα

Γ(α+ 1)
+ ∥g∥∞

xα

Γ(α+ 1)
+

K∗µxα

Γ(α+ 1)

}
≤ sup

x∈J

(
|u0|+

∥a∥∞ λ̃+ ∥g∥∞ +K∗µ

Γ(α+ 1)

)
.
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Dividing both sides by λ̃ and taking the limit as λ̃→ +∞, we obtain

1 <
∥a∥∞

Γ(α+ 1)
,

which contradicts our assumption (4.1). Hence, for some positive integer λ̃, we must have
TB

λ̃
⊆ B

λ̃
.

An application of Schauder’s fixed point Theorem shows that there exists at least a fixed
point u of T inC(J,R). Then u is the solution to (1.1)−(1.2) on J, and the proof is completed.

�

Now, our result is based on the Banach contraction principle.

Theorem 4.2. Assume that (H1)–(H3) hold. If(
∥a∥∞ +K∗LF

Γ(α+ 1)

)
< 1. (4.5)

Then there exists a unique solution u(x) ∈ C(J) to (1.1)− (1.2).

Proof. By Lemma 1, we know that a function u is a solution to (1.1)− (1.2) iff u satisfies

u(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u(s)ds+

1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
K(s, τ)F (u(τ))dτ

)
ds.

Let the operator T : C(J,R) → C(J,R), be defined as in Theorem 4.1. We can see that, if
u ∈ C(J,R) is a fixed point of T , then u is a solution of (1.1) − (1.2).

Now we prove T has a fixed point u in C(J,R). For that, let u1, u2 ∈ C(J,R) and for any
x ∈ [0, 1] such that

u1(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u1(s)ds+

1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
K(s, τ)F (u1(τ))dτ

)
ds,

and,

u2(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u2(s)ds+

1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
K(s, τ)F (u2(τ))dτ

)
ds.
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Consequently, we get

|(Tu1)(x)− (Tu2)(x)|

≤ 1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |u1(s)− u2(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

(∫ s

0
|K(s, τ)| |F (u1(τ))− F (u2(τ))| dτ

)
ds

≤
∥a∥∞

Γ(α+ 1)
|u1(x)− u2(x)|+

K∗LF

Γ(α+ 1)
|u1(x)− u2(x)|

=

(
∥a∥∞ +K∗LF

Γ(α+ 1)

)
|u1(x)− u2(x)| .

From the inequality (4.5) we have

∥Tu1 − Tu2∥∞ ≤ ∥u1 − u2∥∞ .

This means that T is contraction map. By the Banach contraction principle, we can conclude
that T has a unique fixed point u in C(J,R). �

Theorem 4.3. Suppose that (H1)–(H3), and (4.5) hold, if the series solution u(x) =
∑∞

i=0 ui(x)
and ∥u1∥∞ < ∞ obtained by the m-order deformation is convergent, then it converges to the
exact solution of the fractional integro-differential equation (1.1)− (1.2).

Proof. Denote as (C[0, 1], ∥.∥) the Banach space of all continuous functions on J,with |u1(x)| ≤
∞ for all x in J .

Frist we define the sequence of partial sums sn, let sn and sm be arbitrary partial sums with
n ≥ m. We are going to prove that sn =

∑n
i=0 ui(x) is a Cauchy sequence in this Banach

space:

wwwsn − sm

www
∞

= max
∀x∈J

sn − sm


= max

∀x∈J

 n∑
i=0

ui(x)−
m∑
i=0

ui(x)


= max
∀x∈J

 n∑
i=m+1

ui(x)


= max
∀x∈J

 n∑
i=m+1

( 1

Γ(α)

∫ x

0
(x− t)α−1[a(t)ui(t) +

∫ t

0
K(t, s)Ai(s)ds]dt

)
= max

∀x∈J

∣∣∣ 1

Γ(α)

∫ x

0
(x− t)α−1

[
a(t)

n−1∑
i=m

ui(t) +

∫ t

0
K(t, s)

n−1∑
i=m

Ai(s)ds
]
dt
∣∣∣.
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From (3.1) and (3.2), we have
n−1∑
i=m

Ai = F (sn−1)− F (sm−1),

n−1∑
i=m

ui = u(sn−1)− u(sm−1).

So,

∥sn − sm∥∞ = max
∀x∈J

(∣∣∣ 1

Γ(α)

∫ x

0
(x− t)α−1

[
a(t)(u(sn−1)− u(sm−1))

+

∫ t

0
K(t, s)(F (sn−1)− F (sm−1))ds

]
dt
∣∣∣),

≤ max
∀x∈J

( 1

Γ(α)

∫ x

0
|x− t|α−1

[
|a(t)||u(sn−1)− u(sm−1)|

+

∫ t

0
|K(t, s)||(F (sn−1)− F (sm−1))|ds

]
dt
)
,

≤ 1

Γ(α+ 1)

[
∥a(t)∥∞∥sn−1 − sm−1∥∞ +K∗LF ∥sn−1 − sm−1∥∞

]
,

=
(∥a∥∞ +K∗LF

Γ(α+ 1)

)
∥sn−1 − sm−1∥∞,

= δ∥sn−1 − sm−1∥∞.

where

δ =

(
∥a∥∞ +K∗LF

Γ(α+ 1)

)
Let n = m+ 1, then

∥sn − sm∥∞ ≤ δ∥sm − sm−1∥∞ ≤ δ2∥sm−1 − sm−2∥∞ ≤ · · · ≤ δm∥s1 − s0∥∞,

so,

∥sn − sm∥∞ ≤ ∥sm+1 − sm∥∞ + ∥sm+2 − sm+1∥∞ + · · ·+ ∥sn − sn−1∥∞
≤ [δm + δm+1 + · · ·+ δn−1]∥s1 − s0∥∞
≤ δm[1 + δ + δ2 + · · ·+ δn−m−1]∥s1 − s0∥∞

≤ δm(
1− δn−m

1− δ
)∥u1∥∞.

Since 0 < δ < 1, we have (1− δn−m) < 1, then

∥sn − sm∥∞ ≤ δm

1− δ
∥u1∥∞.
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But |u1(x)| <∞, so, as m −→ ∞, then ∥sn − sm∥∞ −→ 0.

We conclude that sn is a Cauchy sequence in C[0, 1], therefore u = limn→∞ un.
Then, the series is convergence and the proof is complete. �

5. ILLUSTRATIVE EXAMPLE

In this section, we present the analytical technique based on MADM to solve Caputo frac-
tional integro-differential equations.

Example 5.1 Consider the following Caputo fractional integro-differential equation:

cD0.5[u(x)] = −x
2ex

3
u(x) +

∫ x

0
exsu(s)ds+

∫ 1

0
x2u(s)ds+

x0.5

Γ(1.5)
− x2

2
, (5.1)

with the initial condition

u(0) = 0,

and the the exact solution is u(x) = x. Applying the operator J0.5 to both sides of Eq. (5.1)

u(x) = 0 + J0.5
[
− x2ex

3
u(x)

]
+ J0.5

[ ∫ x

0
exsu(s)ds+

∫ 1

0
x2u(s)ds

]
+ J0.5

[ x0.5

Γ(1.5)
− x2

2

]
.

Then,

u(x) = J0.5
[
− x2ex

3
u(x)

]
+ J0.5

[ ∫ x

0
exsu(s)ds+

∫ 1

0
x2u(s)ds

]
+ J0.5

[ x0.5

Γ(1.5)
− x2

2

]
.(5.2)

From Eq. (5.1) we see g(x) = x0.5

Γ(1.5) −
x2

2 , suppose R(x) = J0.5g(x), from Eq. (5.2) we
have

R(x) = J0.5g(x) = J0.5
[ x0.5

Γ(1.5)
− x2

2

]
,

=
1

Γ(1.5)Γ(0.5)

∫ x

0
(x− s)−0.5s0.5ds− 1

2Γ(0.5)

∫ x

0
(x− s)−0.5s2ds,

=
1

Γ(1.5)Γ(0.5)

∫ x

0
(1− s

x
)−0.5x−0.5s0.5ds− 1

2Γ(0.5)

∫ x

0
(1− s

x
)−0.5x−0.5s2ds,

=
1

Γ(1.5)Γ(0.5)

∫ 1

0
(1− τ)−0.5τ0.5xdτ − 1

2Γ(0.5)

∫ 1

0
(1− τ)−0.5x2.5τ2dτ,

=
x

Γ(1.5)Γ(0.5)
β(0.5, 1.5)− x2.5

2Γ(0.5)
β(0.5, 3),

= x− x2.5

Γ(3.5)
.
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Now, we apply the modified Adomian decomposition method,

R(x) = R1(x) +R2(x) = J0.5
[ x0.5

Γ(1.5)
− x2

2

]
= x− x2.5

Γ(3.5)
.

The modified recursive relation

u0(x) = R1(x) = x.

u1(x) = R2(x) + J0.5

(
−x

2ex

3
u0(x)

)
+ J0.5

(∫ x

0
exsA0(s)ds+

∫ 1

0
x2B0(s)ds

)
,

= − x2.5

Γ(3.5)
+ J0.5

(
−x

2ex

3
x

)
+ J0.5

(∫ x

0
exs2ds+

∫ 1

0
x2sds

)
,

= − x2.5

Γ(3.5)
+ J0.5

(
−x

3ex

3

)
+ J0.5

(
exx3

3
+
x2

2

)
,

= − x2.5

Γ(3.5)
+ J0.5

(
−x

3ex

3

)
+ J0.5

(
exx3

3

)
+ J0.5

(
x2

2

)
,

= 0.

u2(x) = 0.

...
un(x) = 0.

Therefore, the obtained solution is

u(x) =

∞∑
i=0

ui(x) = x.

6. CONCLUSIONS

The modified Adomian decomposition method is successfully applied to find the approxi-
mate solution of Caputo fractional integro-differential equation. The reliability of the method
and reduction in the size of the computational work give this method a wider applicability.
The method is very powerful and efficient in finding analytical as well as numerical solutions
for wide classes of linear and nonlinear fractional integro-differential equations. Moreover,
we proved the existence and uniqueness of the solution. The convergence theorem and the
illustrative example establish the precision and efficiency of the proposed technique.

REFERENCES

[1] K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to nonlinear equations, Math.
Comput. Modelling, 20, 9 (1994), 69–73.

[2] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 2
(1988), 501–544.

[3] S. Alkan and V. Hatipoglu, Approximate solutions of Volterra-Fredholm integro-differential equations of frac-
tional order, Tbilisi Mathematical Journal, 10, 2 (2017), 1–13.



CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION 177

[4] M. AL-Smadi and G. Gumah, On the homotopy analysis method for fractional SEIR epidemic model, Re-
search J. Appl. Sci. Engrg. Technol., 7, 18 (2014), 3809–3820.

[5] M. Bani Issa, A. Hamoud, K. Ghadle and Giniswamy, Hybrid method for solving nonlinear Volterra-Fredholm
integro-differential equations, J. Math. Comput. Sci. 7, 4 (2017), 625–641.

[6] A. Hamoud and K. Ghadle, The reliable modified of Laplace Adomian decomposition method to solve nonlin-
ear interval Volterra-Fredholm integral equations, Korean J. Math., 25, 3 (2017), 323–334.

[7] A. Hamoud and K. Ghadle, On the numerical solution of nonlinear Volterra-Fredholm integral equations by
variational iteration method, Int. J. Adv. Sci. Tech. Research, 3 (2016), 45–51.

[8] A. Hamoud and K. Ghadle, The combined modified Laplace with Adomian decomposition method for solving
the nonlinear Volterra-Fredholm integro-differential equations, J. Korean Soc. Ind. Appl. Math., 21 (2017),
17–28.

[9] A. Hamoud and K. Ghadle, Modified Adomian decomposition method for solving fuzzy Volterra-Fredholm
integral equations, J. Indian Math. Soc., 85, (1-2) (2018), 52–69.

[10] A. Hamoud and K. Ghadle, Modified Laplace decomposition method for fractional Volterra-Fredholm integro-
differential equations, J. Math. Model., 6, 1 (2018), 91–104.

[11] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-
Holland Math. Stud. Elsevier, Amsterdam, 204, 2006.

[12] V. Lakshmikantham, Theory of fractional functional differential equations, Nonlinear Analysis: Theory,
Methods and Appl. 69, 10 (2008), 3337–3343.

[13] X. Ma and C. Huang, Numerical solution of fractional integro-differential equations by a hybrid collocation
method, Appl. Math. Comput., 219, 12 (2013), 6750–6760.

[14] R. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition
method, Int. J. Appl. Math. Mech., 4, 2 (2008), 87–94.

[15] S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon
and Breach, Yverdon, 1993.

[16] A.M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput. 102 (1999),
77–86.

[17] C. Yang and J. Hou, Numerical solution of integro-differential equations of fractional order by Laplace de-
composition method, Wseas Trans. Math., 12, 12 (2013), 1173–2880.

[18] X. Zhang, B. Tang, and Y. He, Homotopy analysis method for higher-order fractional integro-differential
equations, Comput. Math. Appl., 62, 8 (2011), 3194–3203.

[19] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore: World Scientific, 6, 2014.
[20] M. Zurigat, S. Momani and A. Alawneh, Homotopy analysis method for systems of fractional integro-

differential equations, Neur. Parallel Sci. Comput., 17, (2009), 169–186.


