DOI QR코드

DOI QR Code

Damage of bonded, riveted and hybrid (bonded/riveted) joints, Experimental and numerical study using CZM and XFEM methods

  • Ezzine, M.C. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Amiri, A. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Tarfaoui, M. (ENSTA Bretagne, MSN/LBMS/DFMS) ;
  • Madani, K. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes)
  • Received : 2018.01.30
  • Accepted : 2018.04.18
  • Published : 2018.09.25

Abstract

The objective of our study is to analyze the behavior of bonded, riveted and hybrid (bonded / riveted) steel / steel assemblies by tensile tests and to show the advantage of a hybrid assembly over other processes. the finite element method with the ABAQUS numerical code was used to model the fracture behavior of the different assemblies. Cohesive zone models (CZM) have been adopted to model crack propagation in bonded joints using a bilinear tensile separation law implemented in the ABAQUS finite element code. The riveted assemblies were modeled with the XFEM damage method identified in this ABAQUS numerical code. Both CZM and XFEM methods are combined to model hybrid assemblies. The results are consistent with the experimental results and make it possible to guarantee the validity of the applied numerical model. The use of a hybrid assembly shows a high resistance compared to other conventional methods, where the number of rivets has been highlighted. The use of the hybrid assembly improves mechanical strength and increases service life compared to a single lap joint and a riveted joint.

Keywords

References

  1. Adams, R., Atkins, R., Harris, J. and Kinloch, A. (1986), "Stress analysis and failure properties of carbonfibre reinforced plastic/steel double lap-joint", J. Adhesion, 20(1), 29-53. https://doi.org/10.1080/00218468608073238
  2. Adams, R.D. (2005), Adhesive Bonding: Science, Technology and Applications, Woodhead Publishing Ltd., Bristol, United Kingdom.
  3. Adams, R.D. and Peppiatt, N.A. (1974), "Stress analysis of adhesive-bonded lap joints", J. Strain Analysis, 9(3), 185-196. https://doi.org/10.1243/03093247V093185
  4. Al-Bahkali, E.A. (2011), "Finite element modeling for thermal stresses developed in riveted and rivetbonded joints", J. Eng. Technol., 11(06), 86-92.
  5. Apalak, Z., Apalak, M. and Genc, M. (2006), "Progressive damage modeling of an adhesively bonded unidirectional composite single-lap joint in tension at the mesoscale level", J. Thermoplastic Compos. Mater., 19(6), 671-702. https://doi.org/10.1177/0892705706067487
  6. Benchiha, A., Madani, K., Touzain, S. and Ratwani, M. (2016), "Numerical analysis of the Influence of the presence of disbond region in adhesive layer on the stress intensity factors (SIF) and crack opening displacement (COD) in plates repaired with a composite patch", Steel Compos. Struct., 20(4), 951-962. https://doi.org/10.12989/scs.2016.20.4.951
  7. Blackman, B.R.K., Kinloch, A.J., Taylor, A.C. and Wang, Y. (2000), "The impact wedge-peel performance of structural adhesives", J. Mater. Sci., 35(8), 1867-1884. https://doi.org/10.1023/A:1004793730352
  8. Camanho, P.P. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", NASA/TM-2002-211737; NASA Langley Research Center, U.S.A.
  9. Campilho, R.D.S.G., de Moura, M.F.S.F., Ramantani, D.A., Morais, J.J.L. and Domingues, J.J.M.S. (2009), "Buckling behaviour of carbon-epoxy adhesively-bonded scarf repairs", J. Adhes. Sci. Technol., 23(10-11),1493-1513. https://doi.org/10.1163/156856109X433045
  10. Challita, G., Othman, R., Casari, P. and Khalil, K. (2011), "Experimental investigation of the shear dynamic behavior of double-lap adhesively bonded joints on a wide range of strain rates", J. Adhes. Adhes., 31(3), 146-153. https://doi.org/10.1016/j.ijadhadh.2010.11.014
  11. Chan, W.S. and Vedhagiri, S. (2001), "Analysis of composite bonded/bolted joints used in repairing", Compos. Mater., 35(12), 1045-1061. https://doi.org/10.1177/002199801772662325
  12. Collings, T.A. (1977), "The strength of bolted joints in multi-directional CFRP laminates", Composites, 8(1), 43-55. https://doi.org/10.1016/0010-4361(77)90027-1
  13. da Silva, L.F.M. and Ochsner, A. (2008), Modeling of Adhesive Bonded Joints., Springer, Berlin, Germany.
  14. da Silva, L.F.M., Carbas, R.J.C. and Critchlow, G.W. (2009), "Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints", J. Adhes. Adhes., 29(6), 621-632. https://doi.org/10.1016/j.ijadhadh.2009.02.012
  15. De'Neve, B., Delamar, M., Nguyen, T.T. and Shanahan, M.E.R. (1998), "Failure mode and ageing of steel/epoxy joints", Appl. Surf. Sci., 134(1-4), 202-212. https://doi.org/10.1016/S0169-4332(98)00220-7
  16. Elhannani, M., Madani, K., Legrand, E., Touzain, S. and Feaugas, X. (2017), "Numerical analysis of the effect of the presence, number and shape of bonding defect on the shear stresses distribution in an adhesive layer for the single-lap bonded joint; Part 1", Aerosp. Sci. Technol., 62, 122-135. https://doi.org/10.1016/j.ast.2016.11.024
  17. Elhannani, M., Madani, K., Mokhtari, M., Feaugas, X., Touzain, S. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326. https://doi.org/10.12989/sem.2016.59.2.313
  18. Fu, M. and Mallick, P. (2001), "Fatigue of hybrid (adhesive/bolted) joints in SRIM composites", J. Adhes. Adhes., 21(2), 145-159. https://doi.org/10.1016/S0143-7496(00)00047-6
  19. Gomez, S., Onoro, J. and Pecharroman, J. (2007), "A simple mechanical model of a structural hybrid adhesive/riveted single lap joint", J. Adhes. Adhes., 27(4), 263-267. https://doi.org/10.1016/j.ijadhadh.2006.01.004
  20. Harris, J.A. and Adams, R.A. (1984), "Strength prediction of bonded single lap joints by nonlinear finite element methods", J. Adhes. Adhes., 4(2), 65-78. https://doi.org/10.1016/0143-7496(84)90103-9
  21. Hart-Smith, L.J. (1973), "Adhesive-bonded double-lap joints", NASA-CR-112235; Douglas Aircraft Co., Inc., CA, U.S.A.
  22. Hart-Smith, L.J. (1985), "Bonded-bolted composite joints", J. Aircraft., 22(11), 993-1000. https://doi.org/10.2514/3.45237
  23. Ireman, T., Nyman, T. and Hellbom, K. (1993), "On design methods for bolted joints in composite aircraft structures", Compos. Struct., 25(1-4), 567-578. https://doi.org/10.1016/0263-8223(93)90205-5
  24. Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013a), "Single lap joints loaded in tension with high strength steel adherends", J. Adhes. Adhes., 43, 81-95. https://doi.org/10.1016/j.ijadhadh.2013.01.016
  25. Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013b), "Single lap joints loaded intension with ductile steel adherends", J. Adhes. Adhes., 43, 96-108. https://doi.org/10.1016/j.ijadhadh.2013.01.017
  26. Kelly, G. (2006), "Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints", Compos. Struct., 72(1), 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002
  27. Kweon, J., Jung, J., Kim, T., Choi, J. and Kim, D. (2006), "Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding", Compos. Struct., 75(1), 192-198. https://doi.org/10.1016/j.compstruct.2006.04.013
  28. Lee, M., Cho, T., Kim, W., Lee, B. and Lee, J. (2010), "Determination of cohesive parameters for a mixedmode cohesive zone model", J. Adhes. Adhes., 30(5), 322-328. https://doi.org/10.1016/j.ijadhadh.2009.10.005
  29. Lee, M.H., Kim, H.Y., Oh, S.L. (2006), "Crushing test of double hat-shaped members of dissimilar materials with adhesively bonded and self-piercing riveted joining methods", Thin-Walled Struct., 44(4), 381-386. https://doi.org/10.1016/j.tws.2006.04.012
  30. Lees, W.A. (1985), "Stress distribution in bonded joints: an exploration within a mathematical model", Mater. Des., 6(3), 117-23. https://doi.org/10.1016/0261-3069(85)90054-8
  31. Matthews, F.L., Kilty, P.F. and Goodwin, E.W. (1982), "A Review of the strength of joints in fibre reinforced plastics. Part 2 Adhesively bonded joints", Compos., 29-37.
  32. Mokhtari, M., Madani, K., Belhouari, M., Touzain, S., Feaugas, X. and Ratwani, M. (2013), "Effects of composite adherend properties on stresses in double lap bonded joints", Mater. Design, 44, 633-639. https://doi.org/10.1016/j.matdes.2012.08.001
  33. Peroni, L., Avalle, M. and Belingardi, G. (2009), "Comparison of the energy absorption capability of crash boxes assembled by spot-weld and continuous joining techniques", J. Impact Eng., 36(3), 498-511. https://doi.org/10.1016/j.ijimpeng.2008.06.004
  34. Reid, J.D. and Hiser, N.R. (2005), "Detailed modeling of bolted joints with slippage", Finite Elem. Anal. Des., 41(6), 547-562. https://doi.org/10.1016/j.finel.2004.10.001
  35. Rezgani, L., Madani, K. and Mokhtari, M., Feaugas, X., Cohendoz, S., Touzain, S. and Mallarino, S. (2018), "Hygrothermal ageing effect of ADEKIT A140 adhesive on the J-integral of a plate repaired by composite patch", J. Adhes. Sci. Technol., 32(13), 1393-1409. https://doi.org/10.1080/01694243.2017.1415790
  36. Rezgani, L., Madani, K., Feaugas, X., Touzain, S. and Vallette, J. (2016), "Influence of water ingress onto the crack propagation rate in a AA2024-T3 plate repaired by a carbon/epoxy patch", Aerosp. Sci. Technol., 55, 359-365. https://doi.org/10.1016/j.ast.2016.06.010
  37. Russo, A. and Zuccarello, B. (2013), "Toward a design method for metal-composite co-cured joints based on the G-SIFs", Compos. Part B: Eng., 45(1), 631-643. https://doi.org/10.1016/j.compositesb.2012.08.024
  38. Sadowski, T., Knec, M. and Golewski, P. (2010), "Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets", J. Adhes. Adhes., 30(5), 338-346. https://doi.org/10.1016/j.ijadhadh.2009.11.004
  39. Seo, D.W., Lim, J.K. (2005), "Tensile, bending and shears strength distributions of adhesive-bonded butt joint specimens", Compos. Sci. Technol., 65(9), 1421-1427. https://doi.org/10.1016/j.compscitech.2004.12.013
  40. Thrall, Jr. and Edward, W. (1977), "Primary adhesively bonded structure technology (PABST)", J. Aircraft, 14(6), 588-594. https://doi.org/10.2514/3.58825
  41. Thrall, Jr. and Edward, W. (1979), "PABST program test results", Adhes., 22(10), 22-33.
  42. Tsai, M. and Morton, J. (1993), "Mechanics of a laminated composite single-lap joint", Mechanics Composites Rev.
  43. Tsai, M. and Morton, J. (1995), "The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints", Compos. Struct., 32(1-4), 123-131. https://doi.org/10.1016/0263-8223(95)00059-3
  44. Tsai, M.Y. and Morton, J. (1994), "An evaluation of analytical and numerical solutions to the single-lap joint", Solids Struct., 31(18), 2537-2563. https://doi.org/10.1016/0020-7683(94)90036-1
  45. Vinson, J.R. (1989), "Adhesive bonding of polymer composites", Polym. Eng. Sci., 29(19), 1325-1331. https://doi.org/10.1002/pen.760291904
  46. Volkersen, O. (1938), "Die Nietkraftverteilung in Zugbeanspruchten Neitverbeindun- gen mit Konstanten Laschequerschnitten", Die Luftfahrtforschung, 15, 41-47.
  47. Wooley, G.R. and Carver, D.R. (1971), "Stress concentration factors for bonded lap joints", J. Aircraft, 8(10), 817-820. https://doi.org/10.2514/3.44305
  48. Zhang, F., Wang, H.P., Hicks, C., Yang, X., Carlson, B. and Zhou, Q. (2013a), "Experimental study of initial strengths and hygro thermal degradation of adhesive joints between thin aluminum and steel substrates", J. Adhes. Adhes., 43, 14-25. https://doi.org/10.1016/j.ijadhadh.2013.01.001
  49. Zhang, F., Yang, X., Wang, H.P., Zhang, X., Xia, Y. and Zhou, Q. (2013b), "Durability of adhesively- bonded single lap-shear joints in accelerated hygrothermal exposure for automotive applications", J. Adhes. Adhes., 44, 130-137. https://doi.org/10.1016/j.ijadhadh.2013.02.009