DOI QR코드

DOI QR Code

MoO2-decorated TiO2 Nanofiber Composite as Visible-light Photocatalysts and Electrodes for Supercapacitor Applications

MoO2-TiO2 나노섬유 복합체의 가시광선 광촉매 및 슈퍼캐패시터 전극 응용

  • Seo, Su-Jung (Department of Organic Materials and Fiber Engineering, Chonbuk National University) ;
  • Amna, Touseef (College of Science, Albaha University) ;
  • Hassan, M. Shamshi (College of Science, Albaha University) ;
  • Kim, Hyun-Chel (School of Integrated Technology & Entrepreneurship, Chungwoon University) ;
  • Khil, Myung-Seob (Department of Organic Materials and Fiber Engineering, Chonbuk National University)
  • Received : 2018.07.05
  • Accepted : 2018.08.11
  • Published : 2018.08.31

Abstract

Anchoring zero-dimensional nanoparticles on a one-dimensional nanomaterial is potentially advantageous in many applications. In this work, we successfully synthesized $MoO_2$- decorated $TiO_2$ nanofibers using a hydrothermal method with ethanol as a reducing agent. The samples were characterized by XRD, SEM-EDX, EPMA, Raman spectroscopy, and FT-IR. The samples were investigated for visible-light photocatalytic activity using methylene blue as a model dye. The novel $MoO_2$-decorated $TiO_2$ composite showed remarkably enhanced performance compared to pristine $MoO_2$ and $TiO_2$. The $MoO_2$-decorated $TiO_2$ composite also exhibited higher electrochemical capacitance than the pristine samples as electrode materials for supercapacitors. The obtained high photocatalytic activity and supercapacitance can be attributed to the synergistic effects between the $MoO_2$ nanoparticles and $TiO_2$ nanofibers. A maximum specific capacitance of $245.1Fg^{-1}$, measured by cyclic voltammetry at a scan rate of 2 mV/s, was achieved in a $1M\;H_2SO_4$ aqueous solution. The electrochemical performances of pure $MoO_2$ nanoparticles were significantly improved after adding $TiO_2$ nanofibers. These results suggest the applicability of the $MoO_2$-decorated $TiO_2$ hierarchical design for the removal of chemical pollutants and as electrode materials for supercapacitors.

Keywords

References

  1. W. Liu, J. Cai, and Z. Li, "Self-Assembly of Semiconductor Nanopaticles/Reduced Graphene Oxide (RGO) Composite Aerogels for Enhanced Photocatalytic Performance and Facile Recycling in Aqueous Photocatalysis", ACS Sus. Chem. Eng., 2015, 3, 277-282. https://doi.org/10.1021/sc5006473
  2. C. C. Hu, K. H. Chang, M.-C. Lin, and Y. T. Wu, "Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous $RuO_2$ for Next Generation Supercapacitors", Nano Lett., 2006, 6, 2690-2695. https://doi.org/10.1021/nl061576a
  3. T. Brezesinski, J. Wang, J. Polleux, B. Dunn, and S. H. Tolbert, "Templated Nanocrystal-Based Porous $TiO_2$ Films for Next Generation Electrochemical Capacitors", J. Am. Chem. Soc., 2009, 131, 1802-1809. https://doi.org/10.1021/ja8057309
  4. R. Liu, W.-D. Yang, L.-S. Qiang, and H.-Y. Liu, "Conveniently Fabricated Heterojunction ZnO/$TiO_2$ Electrodes Using $TiO_2$ Nanotube Arrays for Dye-sensitized Solar Cells", J. Power Source, 2012, 220, 153-159. https://doi.org/10.1016/j.jpowsour.2012.07.097
  5. J. Zhao, L. Wang, X. Yan, Y. Yang, Y. Lei, J. Zhou, Y. Huang, Y. S. Gu, and Y. Zhang, "Structure and Photocatalytic Activity of Ni-doped ZnO Nanorods", Mater. Res. Bull., 2011, 46, 1207-1210. https://doi.org/10.1016/j.materresbull.2011.04.008
  6. X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductorbased Photocatalytic Hydrogen Generation", Chem. Rev., 2010, 110, 6503-6570. https://doi.org/10.1021/cr1001645
  7. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, "$Ag_2O$/ $TiO_2$ Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity", ACS Appl. Mater. Interfaces, 2010, 2, 2385-2392. https://doi.org/10.1021/am100394x
  8. Q. Yuan, L. Chen, M. Xiong, J. He, S.-L. Luo, C.-T. Au, and S.-F. Yin, "$Cu_{2}O/BiVO_{4}$Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr(VI) under Visible Light", Chem. Eng. J., 2014, 255, 394-402. https://doi.org/10.1016/j.cej.2014.06.031
  9. Y. Zhang, Y. Xie, J. Li, T. Bai, and J. Wang, "Photocatalytic Activity and Adsorption Performance of $p-CuBi_2O_4$/n-$TiO_2$ p-n Heterojunction Composites Prepared by in situ Sol-gel Coating Method", J. Sol-Gel Sci. Technol., 2014, 71, 38-42. https://doi.org/10.1007/s10971-014-3328-2
  10. M. Wang, J. Han, Y. Hu, R. Guo, and Y. Yin, "Carbon-Incorporated NiO/$TiO_2$ Mesoporous Shells with p-n Heterojunctions for Efficient Visible Light Photocatalysis", ACS Appl. Mater. Interfaces, 2016, 8, 29511-29521. https://doi.org/10.1021/acsami.6b10480
  11. W. Lu, L. Qu, K. Henry, and L. Dai, “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes”, J. Power Sources, 2009, 189, 1270-1277. https://doi.org/10.1016/j.jpowsour.2009.01.009
  12. A. K. Shukla, S. Sampath, and K. Vijayamohanan, “Elec-Trochemical Supercapacitors: Energy Storate Beyond Batteries”, Current Science, 2000, 79, 1656-1661.
  13. P. Wang, H. Liu, Q. Tan, and J. Yang, "Ruthenium Oxide-based Nanocomposites with High Specific Surface Area and Improved Capacitance as a Supercapacitor", RSC Adv., 2014, 4, 42839-42845. https://doi.org/10.1039/C4RA07044E
  14. P. F. Wang, H. Liu, Y. X. Xu, Y. F. Chen, J. Yang, and Q. Q. Tan, "Supported Ultrafine Ruthenium Oxides with Specific Capacitance Up to 1099 $Fg^{-1}$ for a Supercapacitor", Electrochim. Acta, 2016, 194, 211-218. https://doi.org/10.1016/j.electacta.2016.02.089
  15. B. Pal, B. L. Vijayan, S. G. Krishnan, M. Harilal, W. J. Basirun, A. Lowe, M. M. Yusoff, and R. Jose, "Hydrothermal Syntheses of Tungsten Doped $TiO_2$ and $TiO_2/WO_3$ Composite Using Metal Oxide Precursors for Charge Storage Applications", J. Alloys and Compounds, 2018, 740, 703-710. https://doi.org/10.1016/j.jallcom.2018.01.065
  16. P. Prasannalakshmi, N. Shanmugam, and A. S. Kumar, "Electrochemistry of $TiO_2$/CdS Composite Electrodes for Supercapacitor Applications", J. Appl. Electrochem., 2017, 47, 889-903. https://doi.org/10.1007/s10800-017-1092-z
  17. S. S. Raut, G. P. Patil, P. G. Chavan, and B. R. Sankapal, "Vertically Aligned $TiO_2$ Nanotubes: Highly Stable Electrochemical Supercapacitor", J. Electroanal. Chem., 2016, 780, 197-200. https://doi.org/10.1016/j.jelechem.2016.09.024
  18. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, and Y. Li, "Hydrogenated $TiO_2$ Nanotube Arrays for Supercapacitors", Nano Lett., 2012, 12, 1690-1696. https://doi.org/10.1021/nl300173j
  19. H. Wang, S. Li, D. Li, Z. Chen, H. K. Liu, and Z. Guo, "$TiO_2$ Coated Three-dimensional Hierarchically Ordered Porous Sulfur Electrode for the Lithium/sulfur Rechargeable Batteries", Energy, 2014, 75, 597-602. https://doi.org/10.1016/j.energy.2014.08.029
  20. W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou, and H. L. Zhang, "Enhanced Field Emission from Hydrogenated $TiO_2$ Nanotube Arrays", Nanotechnology, 2012, 23, 455204. https://doi.org/10.1088/0957-4484/23/45/455204
  21. X. Zhao, C. Johnston, and P. S. Grant, "A Novel Hybrid Supercapacitor with a Carbon Nanotube Cathode and an Iron Oxide/carbon Nanotube Composite Anode", J. Mater. Chem. 2009, 19, 8755-8760. https://doi.org/10.1039/b909779a
  22. X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang, "Nanostructured Mo-based Electrode Materials for Electrochemical Energy Storage", Chem. Soc. Rev., 2015, 44, 2376-2404. https://doi.org/10.1039/C4CS00350K
  23. Y. Shi, B. Guo, S. A. Corr, Q. Shi, Y. S. Hu, K. R. Heier, L. Chen, R. Seshadri, and G. D. Stucky, "Ordered Mesoporous Metallic $MoO_2$ Materials with Highly Reversible Lithium Storage Capacity", Nano Lett., 2009, 9, 4215-4220. https://doi.org/10.1021/nl902423a
  24. K. M. Hercule, Q. Wei, A. M. Khan, Y. Zhao, X. Tian, and L. Mai, "Synergistic Effect of Hierarchical Nanostructured $MoO_2/Co(OH)_2$ with Largely Enhanced Pseudocapacitor Cyclability", Nano Lett., 2013, 13, 5685-5691. https://doi.org/10.1021/nl403372n
  25. T. Amna, M. S. Hassan, W. S. Shin, H. Van Ba, H. K. Lee, M. S. Khil, and I. Hwang, "$TiO_2$ Nanorods via One-step Electrospinning Technique: A Novel Nanomatrix for Mouse Myoblasts Adhesion and Propagation", Colloids and Surfaces B: Biointerfaces, 2013, 101, 424-429. https://doi.org/10.1016/j.colsurfb.2012.06.012
  26. S. K. Meher and G. R. Rao, "Ultralayered $Co_3O_4$ for High-Performance Supercapacitor Applications", J. Phys. Chem. C, 2011, 115, 15646-15654. https://doi.org/10.1021/jp201200e
  27. M. S. Hassan, T. Amna, A. Mishra, S. I. Yun, H. C. Kim, H. Y. Kim, and M. S. Khil, "Fabrication, Characterization and Antibacterial Effect of Novel Electrospun $TiO_2$ Nanorods on a Panel of Pathogenic Bacteria", J. Biomed. Nanotechnol., 2012, 8, 394-404. https://doi.org/10.1166/jbn.2012.1393
  28. Z. Xiang, Q. Zhang, X. Xu, and Q. Wang, "Preparation and Photoelectric Properties of Semiconductor $MoO_2$ Micro/nanospheres with Wide Bandgap", Ceramics International, 2015, 41, 977-981. https://doi.org/10.1016/j.ceramint.2014.09.017
  29. J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, and W. K. Ho, "The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of $TiO_2$ Thin Films Prepared by Liquid Phase Deposition", J. Phys. Chem. B, 2003, 107, 13871-13879. https://doi.org/10.1021/jp036158y
  30. Z. Li and H. C. Zeng, "Armored MOFs: Enforcing Soft Microporous MOF Nanocrystals with Hard Mesoporous Silica", J. Am. Chem. Soc., 2014, 136, 5631-5639. https://doi.org/10.1021/ja409675j
  31. T. Xia, Q. Li, X. Liu, J. Meng, and X. Cao, “Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide”, J. Phys. Chem. B, 2006, 110, 2006-2012. https://doi.org/10.1021/jp055945n
  32. A. Suzuki, K. Kobayashi, T. Oku, and K. Kikuchi, "Fabrication and Characterization of Porphyrin Dye-sensitized Solar Cells", Mater. Chem. Phys., 2011, 129, 236-241. https://doi.org/10.1016/j.matchemphys.2011.04.010
  33. W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen, "Raman Scattering Study on anatase $TiO_2$ Nanocrystals", J. Phys. D: Appl. Phys., 2000, 33, 912-916. https://doi.org/10.1088/0022-3727/33/8/305
  34. N. Li, Y. Li, G. Sun, Y. Ma, T. Chang, S. Ji, H. Yao, X. Cao, S. Bao, and P. Jin, "Selective and Tunable Near-Infrared and Visible Light Transmittance of $MoO_{3-X}$ Nanocomposites with Different Crysatllinity", Chem. Asian J., 2017, 12, 1709-1714. https://doi.org/10.1002/asia.201700437
  35. T. P. Gujar, W.-Y. Kim, I. Puspitasari, K.-D. Jung, and O.-S. Joo, "Electrochemically Deposited Nanograin Ruthenium Oxide as a Pseudocapacitive Electrode", Int. J. Electrochem. Sci., 2007, 2, 666-673.
  36. J. Zang, S. J. Bao, C. M. Li, H. Bian, X. Cui, Q. Bao, C. Q. Sun, J. Guo, and K. Lian, "Well-Aligned Cone-Shaped Nanostructure of Polypyrrole/$RuO_2$ and Its Electrochemical Supercapacitor", J. Phys. Chem. C, 2008, 112, 14843-14847.