DOI QR코드

DOI QR Code

Effects of Backbone Chemical Structure on Characteristics of Supramolecular Polymers Based on Hydrogen Bonding

수소결합을 기반한 초분자형 고분자에서 주쇄의 화학구조에 따른 특성 연구

  • Jang, Soon Ho (Department of Organic and Nano Engineering, Hanyang University) ;
  • Lee, Junhaeng (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University) ;
  • Chung, Jae Woo (Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University) ;
  • Kim, Seong Hun (Department of Organic and Nano Engineering, Hanyang University)
  • 장순호 (한양대학교 유기나노공학과) ;
  • 이준행 (숭실대학교 정보통신.소재융합학과) ;
  • 정재우 (숭실대학교 정보통신.소재융합학과) ;
  • 김성훈 (한양대학교 유기나노공학과)
  • Received : 2018.06.30
  • Accepted : 2018.08.07
  • Published : 2018.08.31

Abstract

In this study, the effects of a backbone chemical structure on the characteristics of supramolecular polymers based on 2-ureido-4[1H]-pyrimidinone (UPy) moiety with quadruple hydrogen bonding were investigated. The supramolecular polymers were easily synthesized via a UPy moiety functionalized oligomer with a molar mass of approximately 3,000 g/mol. The oligomers selected to form the supramolecular polymers included polytetramethylene glycol (PTMG), polycaprolactone diol (PCL), and polycarbonate diol (PC). The characteristics of the UPy moiety functionalized oligomer are highly dependent on the mobility of the backbone and the existence of the UPy cluster, which is formed by stacking between adjacent UPy dimers. The PC-based supramolecular polymers yielded higher UPy stacked crystals (induced by the UPy cluster) than the PTMG and PCL-based supramolecular polymers.

Keywords

References

  1. S. Y. Yang and Y. J. An, "Studies of the Supramolecular Complexes for Various Applications", Polym. Sci. Tech., 2012, 23, 39-46.
  2. J. W. Chung, "Supramolecular Network Self-Healing Polymer", Polym. Sci. Tech., 2014, 25, 128-134.
  3. L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, "Supramolecular Polymers", Chem. Rev., 2001, 101, 4071-4097. https://doi.org/10.1021/cr990125q
  4. T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, and E. W. Meijer, "Supramolecular Polymerization", Chem. Rev., 2009, 109, 5687-5754. https://doi.org/10.1021/cr900181u
  5. L. Yang, X. Tan, Z. Wang, and X. Zhang, "Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions", Chem. Rev., 2015, 115, 7196-7239. https://doi.org/10.1021/cr500633b
  6. P. Cordier, F. Tournilhac, C. S. Ziakovic, and L. Leibler, “Self-Healing and Thermoreversible Rubber from Supramolecular Assembly”, Nature, 2008, 451, 977-980. https://doi.org/10.1038/nature06669
  7. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, “Autonomic Healing of Polymer Composites”, Nature, 2001, 409, 794-797. https://doi.org/10.1038/35057232
  8. K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, "Self-Healing Materials with Microvascular Networks", Nature Mater., 2007, 6, 581-585. https://doi.org/10.1038/nmat1934
  9. M. D. Hanger, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, "Self-Healing Materials", Adv. Mater., 2010, 22, 5424-5430. https://doi.org/10.1002/adma.201003036
  10. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, “A Thermally Re-mendable Cross-Linked Polymeric Material”, Science, 2002, 295, 1698-1702. https://doi.org/10.1126/science.1065879
  11. Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-Linked Polyamides with High Toughness and Self-Repairing Ability from Maleinide and Furan-Functionalized Aromatic Polyamides", Macromol. Chem. Phys., 2007, 208, 224-232. https://doi.org/10.1002/macp.200600445
  12. Y. S. Ryu, K. W. Oh, and S. H. Kim, "Synthesis and Characterization of a Furan-Based Self-Healing Polymers", Macromol. Res., 2016, 24, 874-880. https://doi.org/10.1007/s13233-016-4122-5
  13. A. K. Sharma, M. Caricato, E. Quartarone, S. Edizer, A. G. Schieroni, R. Mendichi, and D. Pasini, "Polystyrene-based Self-Aggregating Polymers Based on UPy Units", Polym. Bull., 2012, 69, 911-923. https://doi.org/10.1007/s00289-012-0844-5
  14. J. Zhang, M. Huo, M. Li, T. Li, N. Li, and J. Zhou, “Shape Memory and Self-Healing Materials from Supramolecular Block Polymers”, Polymer, 2018, 134, 35-43. https://doi.org/10.1016/j.polymer.2017.11.043
  15. P. Shokrollahi, H. Mirzadeh, W. T. S. Huck, and A. Scherman, “Effect of Self-Complementary Motifs on Phase Compatibility and Material Properties in Blends of Supramolecular Polymers”, Polymer, 2010, 51, 6303-6312. https://doi.org/10.1016/j.polymer.2010.10.039
  16. B. Zhu, Z. Feng, Z. Zheng, and X. Wang, "Thermoreversible Supramolecular Polyurethanes with Self-Complementary Quadruple Hydrogen-Bonded End Groups", J. Appl. Polym. Sci., 2012, 123, 1755-1763. https://doi.org/10.1002/app.34638
  17. Y. J. Kim, P. H. Huh, and B. K. Kim, "Synthesis of Self-Healing Polyurethane Urea-Based Supramolecular Materials", J. Appl. Polym. Sci., Part B: Polym. Phys., 2015, 53, 468-474.
  18. M. Wei, M. Zhan, D. Yu, H. Xie, M. He, K. Yang, and Y. Wang, "Novel Poly(tetramethylene ether)glycol and Poly(${\epsilon}$-caprolactone) Based Dynamic Network via Quadruple Hydrogen Bonding with Triple-Shape Effect and Self-Healing Capacity", ACS Appl. Mater. Interfaces, 2015, 7, 2585-2596. https://doi.org/10.1021/am507575z
  19. S. M. Kim, S. Park, S. Y. Hwang, E. S. Kim, J. G. Jegal, C. G. Im, H. Y. Jeon, D. X. Oh, and J. Y. Park, “Enviromentally-Friendly Synthesis of Carbonate-Type Macrodiols and Preparation of Transparent Self-Healable Thermoplastic Polyurethanes”, Polymers, 2017, 9, 663-678. https://doi.org/10.3390/polym9120663
  20. S. H. Haiso and Y. J. Chen, "Structure-Property Study of Polyimides Derived from PMDA and BPDA Dianhydrides with Structurally Different Diamines", Eur. Polym. J., 2002, 38, 815-828. https://doi.org/10.1016/S0014-3057(01)00229-4
  21. A. Eceiza, M. D. Martin, K. de la Caba, G. Kortaberria, N. Gabilondo, M. A. Corcuera, and I. Mondragon, "Thermoplastic Polyurethane Elastomers Based on Polycarbonate Diols with Different Soft Segment Molecular Weight and Chemical Structure: Mechanical and Thermal Propertier", Polym. Eng. Sci., 2008, 48, 297-306. https://doi.org/10.1002/pen.20905
  22. J. S. Choi and S. Y. Kwak, "Synthesis and Characterization of Hyperbranched Poly(${\epsilon}$-caprolactone)s Having Different Lengths of Homologous Backbone Segments", Macromolecules, 2003, 36, 8630-8637. https://doi.org/10.1021/ma034170i
  23. B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, and E. W. Meijer, "Supramolecular Polymer Materials: Chain Extension of Telechelic Using a Reative Hydrogen-Bonding Synthon", Adv. Mater., 2000, 12, 874-878. https://doi.org/10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
  24. D. J. M. van Beek, A. J. H. Spiering, G. W. M. Peters, K. te Nijenhuis, and R. P. Sijbesma, “Unidirectional Dimerization and Stacking of Ureidopyrimidinone End Groups in Polycaprolactone Supramolecular Polymers”, Macromolecules, 2007, 40, 8464-8475. https://doi.org/10.1021/ma0712394
  25. N. E. Botterhuis, D. J. M. van Beek, G. M. L. van Gemert, A. W. Bosman, and R. P. Sijbesma, "Self-Assembly and Morphology of Polydimethysiloxane Supramolecular Thermoplastic Elastomers", J. Polym. Sci.: Part A: Polym. Chem., 2008, 46, 3877-3885. https://doi.org/10.1002/pola.22680
  26. W. P. Appel, G. Portale, E. Wisse, P. Y. W. Dankers, and E. W. Meijer, “Aggregation of Ureido-Pyrimidinone Supramolecular Thermoplastic Elastomers into Nanofibers: A Kinetic Analysis”, Macromolecules, 2011, 44, 6776-6784. https://doi.org/10.1021/ma201303s