DOI QR코드

DOI QR Code

Reduced Effect of kV-CBCT Dose by Use of Shielding Materials in Radiation Therapy

방사선 치료 시 차폐물질 사용에 따른 kV-CBCT 선량감소 효과

  • Jo, Hyeonjong (Department of Radiation Oncology, Haeundae Paik Hospital, Inje University) ;
  • Park, Euntae (Department of Radiation Oncology, BuSan Paik Hospital, Inje University) ;
  • Kim, Junghoon (Department of Radiological Science, College of Health Sciences, Catholic University of Pusan)
  • 조현종 (해운대백병원 방사선종양학과) ;
  • 박은태 (부산백병원 방사선종양학과) ;
  • 김정훈 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Received : 2018.06.26
  • Accepted : 2018.08.31
  • Published : 2018.08.31

Abstract

CBCT is useful for improving the accuracy of the treatment site, but Repeated use increases the exposure dose. In this study, we aimed to provide basic data for dose reduction in CBCT implementation by dataization the simulating and dose reduction effect using shielding substance. Material in this study, Analyzation the photon beam by simulate the CBCT Through MCNPX and then calculate the absorption dose of body organ at shooting moment of thoracic abdominal position as target UF-Revise simulated body. At this time. Dose reduction effects at this time were evaluated according to the texture of materials and presence of shielding materials( lead, antimony, barium, sulfate, tungsten, bismuth). When CBCT was taken without shielding, the dose was calculated to be high in the breast and spine, and the dose in the esophagus and lung was calculated to be low. The doses according to the shield material were calculated as barium sulfate, antimony, bismuth, lead, and tungsten. The shielding rate was the highest in the thymus (73.6%) and the breast (59.9%) compared with the dose reduction according to presence or absence of the shield. However, it showed the lowest shielding rate in lung (2.1%) and spine (12.6%).

CBCT는 치료부위의 정확도 향상에 유용하지만, 반복적인 사용으로 피폭선량이 높아지는 단점이 있다. 이에 본 연구에서는 차폐체를 사용한 모의실험과 선량감소 효과를 데이터화하여 CBCT 시행 시 선량 저감화를 위한 기초자료를 제공하고자 한다. 본 연구에서는 MCNPX를 통해 CBCT를 모사하여 광자선을 분석한 후, UF-revised 인체 모의 피폭체를 대상으로 흉복부 촬영 시 장기의 흡수선량을 계산하였다. 이 때, 차폐체(납, 안티몬, 황산바륨, 텅스텐, 비스무스) 유무와 차폐 재질에 따른 장기선량을 평가하였다. 차폐를 하지 않고 CBCT 촬영을 하였을 경우 유방 과 척추에서 선량이 높게 계산되었으며, 식도와 폐에서 선량이 낮게 계산되었다. 차폐체 재질에 따른 선량 은 황산바륨, 안티몬, 비스무스, 납, 텅스텐 순으로 선량이 높게 계산되었다. 차폐체 유무에 따른 선량 감소율을 평가해 보면 흉선(73.6%), 유방(59.9%)에서 가장 차폐율이 높고, 폐(2.1%), 척추(12.6%)에서 가장 낮은 차폐율을 보였다.

Keywords

References

  1. L. S. Lee, "A Study on Mechanical Error in Cone Beam Computed Tomography (CBCT) System," Department of Radiology, The Graduate School of Hanseo University, 2013.
  2. B. S. Park. "Analysis of dose distribution versus patient exposed dose according to the freequency of cone beam computerized tomography for prostate intensity modulated radiation therapy," Department of Medical Physics. The Graduate School of Korea University
  3. Y. S. Yoo, H. J. Lee, D. Y. Kim, "Implementation of kV Cone Beam CT for Image Guided Radiation Therapy", Korean Society of Radiation Therapy, Vol. 19, No. 7, pp. 43-49, 2007.
  4. B. S. Park, J. H. An, J. S. Kim, K. W. Song, "Evaluation of Every Other Day- Cone Beam Computed Tomography in Image Guided Radiation Therapy for Prostate Cancer," Korean Society of Radiation Therapy, Vol. 26, No. 2, pp. 289-295, 2014.
  5. D. W. Kim, W. K. Chung, M. G. Yoon, "Imaging doses and secondary cancer risk from kilovoltage cone-beam CT in radiation therapy," Health physics, Vol. 104, No. 5, pp. 499-503, 2013. https://doi.org/10.1097/HP.0b013e318285c685
  6. K. Tsiklakis, C. Donta, S. Gavala, K. Karayianni, V. Kamenopoulou, C. Jhourdakis, "Dose reduction in maxillofacial imaging using low dose Cone Beam CT," European Journal of Radiology, Vol. 56, No. 3, pp. 413-417, 2005. https://doi.org/10.1016/j.ejrad.2005.05.011
  7. W. Y. Song, S. Kamath, S. Ozawa, S. A. Ani, A. Chvetsov, N. Bhandare, J. R. Palta, C. Liu, J. G. Li, "A dose comparison study between XVI and OBI CBCT System," Medical Physics, Vol. 35, No. 2, pp. 480-486, 2008. https://doi.org/10.1118/1.2825619
  8. J. K. Park, S. H. Lee, S. Y. Cha, S. Y. Lee, "Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extra hepatic Bile Duct Cancer with High Dose Rate Intra luminal Brachy therapy," Korea Contents Association, Vol. 14, No. 2, pp. 467-474, 2014.
  9. G. X. Ding, D. M. Duggan, C. W. Coffey, "Characteristics ofkilovoltage x-ray beams used for cone-beam computed tomography inradiation therapy," Physics in Medicine and Biology, Vol. 52, No. 6, pp. 0031-9155, 2007.
  10. G. X. Ding, P. Munro, "Radiation exposure to patients from image guidance procedures and techniques to reduce the imaging dose," Radiotherapy and Oncology, Vol. 108, No. 1, pp. 91-98, 2013. https://doi.org/10.1016/j.radonc.2013.05.034
  11. G. T. Kim, S. S. Kang, S. C. No, B. J. Jeong, C. H. Jo, J. Y. Heo, J. G. Park, "Absorbed Spectrum Comparison of Lead and Tungsten in Continuous X-ray Energy Using Monte Carlo Simulation," Korean Society of Radiology, Vol. 6, No. 6, pp. 483-487, 2012. https://doi.org/10.7742/jksr.2012.6.6.483
  12. A. Palm, E. Nilsson, L. Hermsdorf, "Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system," Journal of Applied Clinical Medical Physics, Vol. 11, No. 1, pp. 229-240, 2010. https://doi.org/10.1120/jacmp.v11i1.3085