DOI QR코드

DOI QR Code

자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance

  • 투고 : 2018.06.26
  • 심사 : 2018.08.30
  • 발행 : 2018.09.01

초록

위성에 작용하는 외란으로 인해서 반작용휠에 원치 않는 모멘텀이 쌓인다. 이를 해소하기 위해서 위성의 축방향으로 설치한 세 개의 자기토커를 이용한다. 자기토커는 지구 자기장과 상호 작용하여 간접적으로 토크를 생성한다. 따라서 모멘텀 덤핑시 자기토커와 자기토커 주위에 형성되는 지구 자기장을 동시에 고려해야 한다. 높은 경사각을 가지는 저궤도 위성이 지구지향을 할 때 위성체의 피치축으로는 매우 약한 지구자기장이 형성된다. 이 경우 하나의 자기토커에 과부하가 걸려서 모멘텀 덤핑 성능이 떨어진다. 본 연구에서는 자기토커의 배치를 변경하여 지구지향자세에서 모멘텀 덤핑 성능을 향상시키는 방법에 대해서 살펴본다.

Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

키워드

참고문헌

  1. Wertz, J. R, Everrett, D. F., and Puscheel, J. J., Space Missin Engineering : The New SMAD, Microcosm, USA, 2011, pp. 579-586.
  2. Park, Y.-W., and Choi, H.-T., "Design and Verification of the Set-point of Wheel Momentum on COMS," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2013, pp. 668-671.
  3. Lee, S.-H., Yong, K.-L., Lim, J.-Y., Kim, Y.-B., Seo, S.-H., and Lee, H.-J., "Performance Analysis of Reaction Wheel Momentum Dumping for Different Types of Magnetic Torquer Actuation," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2008, pp. 1605-1608.
  4. Giulietti, F., and Tortora, P., "Optimal Control Laws for Momentum Wheel Desaturing using Magnetorquers," Journal of Guidance and Dynamics, Vol. 29, No. 6, 2006, pp. 1464-1468. https://doi.org/10.2514/1.23396
  5. Rhee, S.-W., Kim, H.-J., and Son, J.-W., "Roles of B-dot Controller and Failuer Analysis for Dawn-dusk LEO Satellite," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 41, No. 3, 2013, pp. 200-209. https://doi.org/10.5139/JKSAS.2013.41.3.200
  6. Avanzini, G., and Giulietti, F., "Magnetic Detumbling of a Rigid Spacecraft," Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1326-1334 https://doi.org/10.2514/1.53074
  7. Sidi, M. J., Spacecraft Dynamics and Control: A Practical Enginnering Approach, Cambridge Univ. Press, Cambridge, England, U.K., 1997, pp. 190-192.
  8. Lee, M.-S., Yong, K. Y., Park, S.-J., Kim, H.-D., and Kim, E.-K., "Trend Analysis of Nadir Pointing Accuracy of the KOMPSAT-1," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, November 2004, pp. 160-163.
  9. Jeong, O.-C., Choi, S.-J., Cheon, Y.-J., Kim., H.-D., Cheon, Y.-S., Kim, H.-J., and Lee, B.-S., "Analysis on Orbit Maneuver Result of KOMPSAT-2," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2011, pp. 1074-1077.
  10. Wertz, J. R., Everett, D. F., and Puschell, J. J., Space Mission Engineering: The New SMAD, Microcosm Press, CA, USA, 2011, pp. 401-405.
  11. Thebault, E., et al, "International Geomagnetic Reference Field: the 12th generation," Earth, Planets and Space, 2015.