DOI QR코드

DOI QR Code

선박의 종경사 및 횡경사 변화가 화재 확산에 미치는 영향 예측

Prediction of the Effects of the Ship's Heel and Trim Conditions on the Fire Development Characteristics

  • 김별 (한국해양대학교 대학원) ;
  • 황광일 (한국해양대학교 기계공학부)
  • Kim, Byeol (Graduate School of Korea Maritime and Ocean University) ;
  • Hwang, Kwang-Il (Division of Mechanical Engineering, Korea Maritime and Ocean University)
  • 투고 : 2018.07.05
  • 심사 : 2018.08.23
  • 발행 : 2018.08.31

초록

선박사고는 환경적인 요인으로 인해 경사가 항상 존재한다. 선박의 경사는 선내 재실자의 피난 이동속도뿐만 아니라 선내 화재성장에도 영향을 미치기 때문에 화재해석 시 경사조건을 고려하여 위험분석을 할 필요가 있다. 이에 이 연구에서는 FLUENT를 이용하여 선박의 횡경사와 종경사 변화에 따라 산정된 온도결과 값에 의해 화재에 미치는 영향을 분석하였다. 화원의 위치를 기준으로 횡경사가 $-10^{\circ}$일 때 37초, 종경사는 $-10^{\circ}$일 때 36초 이내에 피난을 해야 하는 반면, 횡경사가 $+10^{\circ}$, 종경사가 $+10^{\circ}$인 경우 피난에 영향을 미치지 않을 것으로 예측되었다. 이와 같은 결과를 바탕으로, 선박화재 시 화재발생위치를 기준으로 횡경사와 종경사를 고려하여 피난유도 및 대책을 마련해야함을 확인하였다.

Due to the environmental factors of the sea, ship accidents always contain an inclination angle. The change in the ship affects not only the evacuation speed of passengers but also the fire growth in the ship. For this reason, when analyzing the fire, it is necessary to analyze the risks by considering conditions of inclination. In this study, the temperature that affects the fire was calculated by alteration of ship's heel and trim angle and analyzed using FLUENT. Based on fire occurrence position, evacuation should be done within 37 seconds under the condition of $-10^{\circ}$ heeling angle and 36 seconds under the condition of $-10^{\circ}$ trim angle. However, it was predicted that the evacuation will not be affected under the conditions of $+10^{\circ}$ heel angle and $+10^{\circ}$ trim angle. For these reasons, it is confirmed that when the ship is on fire, evacuation measures should be considered based on the heel and trim conditions as per the location of the fire.

키워드

참고문헌

  1. ANSYS Co(2018), "ANSYS Fluent Theory Guide", pp. 1-870.
  2. Atkinson, G. T. and Wu, Y.(1996), "Smoke Control in Sloping Tunnels", Fire Safety Journal, Vol. 27, pp. 335-341. https://doi.org/10.1016/S0379-7112(96)00061-6
  3. Ha, Y. C. and Seo, J. K., "Applicability of $CO_2$ Extinguishing System for Ships", Journal of the Society of Naval Architects of Korea, Vol. 54, No. 4, pp. 294-300.
  4. Hwang, K. I.(2011), "Comparative Studies of Evacuation Time According to the Distribution Characteristics of Training Ship's Personnels", Journal of Navigation and Port Research, Vol. 35, No. 3, pp. 213-218. https://doi.org/10.5394/KINPR.2011.35.3.213
  5. IMO(2010), International Maritime Organization, "International Code for Application of Fire Test Procedures(2010 FTP Code)", Resolution MSC.307(88).
  6. IMO(2016), International Maritime Organization, "MSC.1/ Circ.1552, Amendments to the Guidelines on Alternative Design and Arrangements for Fire Safety", p. 4.
  7. JoongAng Ilbo(2018), http://news.joins.com/article/22651828, accessed May 24, 2018.
  8. Junmei, Li., Shanshan, L., Yanfeng, L., Chao, C., Xuan, L., and Chenchen, Y.(2012), "Experimental Study of Smoke Spread in Titled Urban Traffic Tunnels Fires", Procedia Engineering, Vol. 45, pp. 690-694. https://doi.org/10.1016/j.proeng.2012.08.224
  9. Kim, B. and Hwang, K. I.(2016), "Smoke Exhaust Performance Prediction According to Air Supply and Exhaust Conditions for Shipboard Fires from a Human Safety Point of View", Journal of the Korean Society of Marine Environment & Safety, Vol. 22, No. 7, pp. 782-790. https://doi.org/10.7837/kosomes.2016.22.7.782
  10. Kim, H. T., Lee, D. K., Park, J. H. and Hong, S. K. (2004), "The Effect on the Mobility of Evacuating Passengers in Ship with Regard to List and Motion", IE Interface, Vol. 17, No. 1, pp. 22-32.
  11. Kim, S. C. and Lee, S. H.(2006), "Numerical Prediction of Smoke Concentration in a Compartment Fire by Using the Modified Volumetric Heat Source Model", Korean Journal of Air-conditioning and Refrigeration Engineering, Vol. 18, No. 4, pp. 344-350.
  12. KMST(2017), Korea Maritime Safety Tribunal, Statistics for the marine accidents (in Korean), https://www.kmst.go.kr/kmst/statistics/annualReport/selectAnnualReportList.do#a
  13. Kim, W. O.(2010), "A Study on the Crew's Survival Ratio According to Ship's Structure", Journal of Navigation and Port Research, Vol. 34, No. 6, pp. 423-427. https://doi.org/10.5394/KINPR.2010.34.6.423
  14. Maele, K. Van. and Merci, B.(2008), "Application of RANS and LES Field Simulations to Predict the Critical Ventilation Velocity in Longitudinally Ventilated Horizontal Tunnels", Fire Safety Journal, Vol. 43, No. 3, pp. 598-609. https://doi.org/10.1016/j.firesaf.2008.02.002
  15. Nicholl, I., Hifi, Y., Lee, B. S., Galea, E. R., Deere, S., Blackshields, D. and Sharp, G.(2012), "The Safeguard Heel Scenario Evacuation Benchmark and Recommendations to IMO to Update MSC Circ 1238", Safeguard Passenger Evacuation Seminar, pp. 83-90.
  16. Novozhilov, V.(2001), "Computational Fluid Dynamics Modeling of Compartment Fires", Progress in Energy and Combustion Science, Vol. 27. pp. 611-666. https://doi.org/10.1016/S0360-1285(01)00005-3
  17. Stavrakakis, G. M. and Markatos, N. C.(2009), "Simulation of Airflow in One- and Two-Room Enclosures Containing a Fire Source", International Journal of Heat and Mass Transfer, Vol. 52, pp. 2690-2703. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.046
  18. Steckler, K. D., Quintiere, J. G. and Rinkinen, W. J.(1982), "Flow Induced by Fire in a Compartment", Symposium (International) on Combustion, Vol. 19, Issue. 1, pp. 913-920.
  19. SNAK(2012), The Society of Naval Architects of Korea, Naval Architectural Calculation, Textbooks Press, pp. 48-51.
  20. Wegrzynski, W. and Vigne, G.(2017), "Experimental and Numerical Evaluation of the Influence of the Soot Yield on the Visibility in Smoke in CFD Analysis", Fire Safety Journal, Vol. 91, pp. 389-398. https://doi.org/10.1016/j.firesaf.2017.03.053
  21. Xue, H., Ho, J. C. and Cheng, Y. M.(2001), "Comparison of Different Combustion Models in Enclosure Fire Simulation", Fire Safety Journal, Vol. 36, pp. 37-54. https://doi.org/10.1016/S0379-7112(00)00043-6