DOI QR코드

DOI QR Code

북방산개구리(Rnan dybowskii )유생의 포식자회피 행동에 대한 FNW와 FNW-Ag 복합체의 영향

Effects of FNW and FNW-Ag on the Antipredator Behavior of Dybowski's Frog (Rana dybowskii) Larvae

  • 김은지 (삼육대학교 동물생명자원학과) ;
  • 고원배 (삼육대학교 융합과학과) ;
  • 한얼 (삼육대학교 동물생명자원학과) ;
  • 고정원 (삼육대학교 융합과학과) ;
  • 정훈 (삼육대학교 동물생명자원학과)
  • Kim, Eunji (Department of Animal Biotechnology and Resource, Sahmyook University) ;
  • Ko, Weon Bae (Department of Convergence Science, Sahmyook University) ;
  • Han, Eul (Department of Animal Biotechnology and Resource, Sahmyook University) ;
  • Ko, Jeong Won (Department of Convergence Science, Sahmyook University) ;
  • Chung, Hoon (Department of Animal Biotechnology and Resource, Sahmyook University)
  • 투고 : 2018.01.15
  • 심사 : 2018.08.29
  • 발행 : 2018.08.31

초록

기존의 독성평가는 생물의 생존가능성에 영향을 줄 수 있는 이상행동반응에 대한 평가를 거의 하지 않았다. 따라서 본 연구에서는 행동학적 이해를 바탕으로 양서류 유생들의 생존가능성과 직결되는 포식자회피반응 행동을 이용하여 fullerene nanowhisker(FNW)와 nanowhisker-silver nanoparticle composites(FNW-Ag복합체)의 독성을 평가해 보았다. 우리는 나노물질에 노출되지 않는 그룹과 5가지 농도에 따른 나노물질에 노출되는 그룹(FNW $10{\mu}g/ml$, $100{\mu}g/ml$, $500{\mu}g/ml$과 FNW-Ag복합체 $10{\mu}g/ml$, $50{\mu}g/ml$)으로 나누어 실험하였다. 그 결과, FNW-Ag복합체 $50{\mu}g/ml$농도에 노출된 유생들을 제외하고는 평소 활동량에는 차이가 없었지만, FNW $10{\mu}g/ml$농도에 노출된 유생들을 제외하고는 모두 포식자인식 반응에 따른 활동변화에서는 통계적으로 유의한 차이가 나타났다. 즉, 나노물질노출 유무는 평소 움직임에는 영향을 주지 않지만, 행동학적 이해를 바탕으로 한 분석결과 포식자회피반응에 영향을 준다는 것을 알 수 있었다. 따라서 생물을 대상으로 하는 독성평가연구에 행동학적 분석이 이루어져야 할 것으로 판단된다.

Existing toxicity assessment researches were rarely studied on assessment of the abnormal behavior that affecting survival. Therefore, the study used anti-predator response of amphibians larvae, based on behavioral understanding, to assess toxicity in fullerene nanowhisker(FNW) and fullerene nanowhisker-silver nanoparticle composites(FNW-Ag). The experiment was conducted by dividing the groups not exposed to nanomaterials and exposed to nanomaterials at five concentrations(FNW: $10{\mu}g/ml$, FNW: $100{\mu}g/ml$, FNW: $500{\mu}g/ml$ FNW-Ag: $10{\mu}g/ml$, FNW: $50{\mu}g/ml$). As a result, there were no differences in normal activity except those exposed to concentrations of FNW-Ag $50{\mu}g/ml$, but there were statistically significant differences in anti-predator response except those exposed to concentrations of FNW $10{\mu}g/ml$. That is, exposed of nanomaterials does not affect ordinary movements, but analyses based on behavioral understandings have shown that it has an influence on the anti-predator response. It is therefore considered necessary to have animal behavioral analysis method performed in the assessment of eco-toxic experiment.

키워드

참고문헌

  1. Asharani, PV, Lianwu, YI, Gong, Z and Valiyaveettil, S (2011). Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos, Nanotoxicology, 5(1), pp. 43-54. [DOI: https://doi.org/10.3109/17435390.2010.489207]
  2. Baker, NJ, Bancroft, BA and Garcia, TS (2013). A meta-analysis of the effects of pesticides and fertilizers on survival and growth of amphibians, Science of the total environment, 449, pp. 150-156. [DOI: https://doi.org/10.1016/j.scitotenv. 2013.01.056]
  3. Bar-Ilan, O, Albrecht, RM, Fako, VE and Furgeson, DY (2009). Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos, Small, 5(16), pp. 1897-1910. [DOI: 10.1002/smll.200801716]
  4. Bermudez, E, Mangum, JB, Wong, BA, Asgharian, B, Hext, PM, Warheit, DB and Everitt, JI (2004). Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicological sciences, 77(2), pp. 347-357. [DOI: https://doi.org/10.1093/ toxsci/kfh019]
  5. Boone, MD and Bridges‐Britton, CM (2006). Examining multiple sublethal contaminants on the gray treefrog (Hyla versicolor): effects of an insecticide, herbicide, and fertilizer, Environmental Toxicology and Chemistry, 25(12), pp. 3261-3265. [DOI: 10.1897/06-235R.1]
  6. Bronmark, C and Hansson, LA (2000). Chemical communication in aquatic systems: an introduction, Oikos, 88(1), pp. 103-109. [DOI: 10.1034/j.1600-0706. 2000.880112.x]
  7. Broomhall, SD (2002). The effects of endosulfan and variable water temperature on survivorship and subsequent vulnerability to predation in Litoria citropa tadpoles, Aquatic Toxicology, 61(3), pp. 243-250. [DOI: https:// doi.org/10.1016/S0166-445X(02)00061-9]
  8. Broomhall, SD (2004). Egg temperature modifies predator avoidance and the effects of the insecticide endosulfan on tadpoles of an Australian frog, J. of Applied Ecology, 41(1), pp. 105-113. [DOI: 10.1111/j.1365-2664.2004.00883.x]
  9. Browning, LM, Lee, KJ, Huang, T, Nallathamby, PD, Lowman, JE and Xu, XHN (2009). Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments, Nanoscale, 1(1), pp. 138-152. [DOI: 10.1039/B9NR00053D]
  10. Chivers, DP and Smith, RJF (1998). Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus, Ecoscience, 5(3), pp. 338-352. [DOI: https://doi.org/10.1080/11956860.1998.11682471]
  11. Egea-Serrano, A, Relyea, RA, Tejedo, M and Torralva, M (2012). Understanding of the impact of chemicals on amphibians: a meta‐analytic review, Ecology and evolution, 2(7), pp. 1382-1397. [DOI: 10.1002/ece3.249]
  12. Fabian, NJ, Albright, LB, Gerlach, G, Fisher, HS and Rosenthal, GG (2007). Humic acid interferes with species recognition in zebrafish (Danio rerio), J. of chemical ecology, 33(11), pp. 2090-2096. [DOI: https://doi.org/10.1007/s10886-007-9377-z]
  13. Ferrari, MC and Chivers, DP (2009). Temporal variability, threat sensitivity and conflicting information about the nature of risk: understanding the dynamics of tadpole antipredator behavior, Animal Behaviour, 78(1), pp. 11-16. [DOI: https://doi.org/10.1016/j.anbehav.2009.03.016]
  14. FraseR, TW, Reinardy, HC, Shaw, BJ, Henry, TB and Handy, RD (2011). Dietary toxicity of single-walled carbon nanotubes and fullerenes ($C_{60}$) in rainbow trout (Oncorhynchus mykiss), Nanotoxicology, 5(1), pp. 98-108. [DOI: https://doi.org/10.3109/17435390.2010.502978]
  15. Geffroy, B, Ladhar, C, Cambier, S, Treguer-Delapierre, M, Brethes, D and Bourdineaud, JP (2012). Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: the role of size, concentration and exposure time, Nanotoxicology, 6(2), pp. 144-160. [DOI: https://doi.org/10.3109/17435390.2011.562328]
  16. Gosner, KL (1960). A simplified table for staging anuran embryos and larvae with notes on identification, Herpetologica, 16(3), pp. 183-190.
  17. Gottschalk, F, Sonderer, T, Scholz, RW and Nowack, B (2009). Modeled environmental concentrations of engineered nanomaterials ($TiO_2$, ZnO, Ag, CNT, fullerenes) for different regions, Environmental science & technology, 43(24), pp. 9216-9222. [DOI: 10.1021/es9015553]
  18. Hayes, TB, Falso, P, Gallipeau, S and Stice, M (2010). The cause of global amphibian declines: a developmental endocrinologist's perspective, J. of Experimental Biology, 213(6), pp. 921-933. [DOI: 10.1242/jeb.040865]
  19. Heinlaan, M, Ivask, A, Blinova, I, Dubourguier, HC and Kahru, A (2008). Toxicity of nanosized and bulk ZnO, CuO and $TiO_2$ to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 71(7), pp. 1308-1316. [DOI: https://doi.org/10.1016/j.chemosphere.2007.11.047]
  20. Holomuzki, JR (1995). Oviposition sites and fish-deterrent mechanisms of two stream anurans, Copeia, pp. 607-613. [DOI: 10.2307/1446757]
  21. Hu, CW, Li, M, Cui, YB, Li, DS, Chen, J and Yang, LY (2010). Toxicological effects of $TiO_2$ and ZnO nanoparticles in soil on earthworm Eisenia fetida, Soil Biology and Biochemistry, 42(4), pp. 586-591. [DOI: https://doi.org/10.1016/j.soilbio.2009.12.007]
  22. Hussain, SM, Hess, KL, Gearhart, JM, Geiss, KT and Schlager, JJ (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells, Toxicology in vitro, 19(7), pp. 975-983. [DOI: https://doi.org/10.1016/j.tiv.2005.06.034]
  23. Jani, PU, McCarthy, DE and Florence, AT (1994). Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration, International journal of pharmaceutics, 105(2), pp. 157-168. [DOI: https://doi.org/10.1016/0378-5173(94)90461-8]
  24. Johansson, BG and Jones, TM (2007). The role of chemical communication in mate choice, Biological Reviews, 82(2), pp. 265-289. [DOI: 10.1111/j.1469-185X.2007.00009.x]
  25. Kats, LB and Dill, LM (1998). The scent of death: chemosensory assessment of predation risk by prey animals, Ecoscience, 5(3), pp. 361-394. [DOI: https://doi.org/10.1080/11956860.1998.11682468]
  26. Kiesecker, JM, Chivers, DP and Blaustein, AR (1996). The use of chemical cues in predator recognition by western toad tadpoles, Animal Behaviour, 52(6), pp. 1237-1245. [DOI: https://doi.org/10.1006/anbe.1996.0271]
  27. Kim, EJ, Ko, WB, Han, E, Kim, HJ, Ko, JW and Chung, H (2015). Effects of Gold Nanoparticles on eggs and tadpoles of Rana dybowskii, J. of Wetlands Research, 17(4), pp. 407-413. [DOI: 10.17663/JWR.2015.17.4.407]
  28. Kisin, ER, Murray, AR, Keane, MJ, Shi, XC, Schwegler-Berry, D, Gorelik, O, Arepalli, S, Casrtamova, V, Wallace, WE, Kagan, VE and Shvedova, AA (2007). Single-walled carbon nanotubes: geno-and cytotoxic effects in lung fibroblast V79 cells, J. of Toxicology and Environmental Health, Part A, 70(24), pp. 2071-2079. [DOI: https://doi.org/10.1080/15287390701601251]
  29. Lee, JH, Park, BE, Lee, YM, Hwang, SH and Ko, WB (2009). Synthesis of fullerene [$C_{60}$]-silver nanoparticles using various non-ionic surfactants under microwave irradiation, Current Applied Physics, 9(2), pp. e152-e156. [DOI: https://doi.org/10.1016/j.cap.2008.12.048]
  30. Lefcort, H, Meguire, RA, Wilson, LH and Ettinger, WF (1998). Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles, Archives of Environmental Contamination and Toxicology, 35(3), pp. 447-456. [DOI: https://doi.org/10.1007/s002449900401]
  31. Li, H, Zhang, J, Wang, T, Luo, W, Zhou, Q and Jiang, G (2008). Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite, Aquatic toxicology, 89(4), pp. 251-256. [DOI: https://doi.org/10.1016/j.aquatox.2008.07.008]
  32. Long, TC, Saleh, N, Tilton, RD, Lowry, GV and Veronesi, B (2006). Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environmental Science & Technology, 40(14), pp. 4346-4352. [DOI: 10.1021/es060589n]
  33. Lovern, SB, Owen, HA and Klaper, R (2008). Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna, Nanotoxicology, 2(1), pp. 43-48. [DOI: https://doi.org/10.1080/17435390801935960]
  34. Lurling, M (2012). Infodisruption: pollutants interfering with the natural chemical information conveyance in aquatic systems. Chemical Ecology in Aquatic Systems, C Bronmark and L-A Hansson (eds.) Oxford university press, New York, pp. 250-271.
  35. Mandrillon, AL and Saglio, P (2007). Herbicide exposure affects the chemical recognition of a non native predator in common toad tadpoles (Bufo bufo), Chemoecology, 17(1), pp. 31-36. [DOI: https://doi.org/10.1007/s00049-006-0354-8]
  36. Oberdorster, E (2004). Manufactured nanomaterials (fullerenes, $C_{60}$) induce oxidative stress in the brain of juvenile largemouth bass, Environmental health perspectives, pp. 1058-1062. [DOI: 10.1289/ehp.7021]
  37. Ortiz-Santaliestra, ME, Marco, A and Lizana, M (2011). Realistic levels of a fertilizer impair Iberian newt embryonic development, Herpetologica, 67(1), pp. 1-9. [DOI: https://doi.org/10.1655/HERPETOLOGICA-D-10-0001.1]
  38. Pakarinen, K, Petersen, EJ, Leppanen, MT, Akkanen, J and Kukkonen, JVK (2011). Adverse effects of fullerenes (nC 60) spiked to sediments on Lumbriculus variegatus (Oligochaeta), Environmental pollution, 159(12), pp. 3750-3756. [DOI: https://doi.org/10.1016/j.envpol.2011.07.014]
  39. Perreault, F, Bogdan, N, Morin, M, Claverie, J and Popovic, R (2012). Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes, Nanotoxicology, 6(2), pp. 109-120. [DOI: https://doi.org/10.3109/17435390.2011.562325]
  40. Petersen, EJ and Henry, TB (2012). Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: review, Environmental Toxicology and Chemistry, 31(1), pp. 60-72. [DOI: 10.1002/etc.710]
  41. Raimondo, SM, Rowe, CL and Congdon, JD (1998). Exposure to coal ash impacts swimming performance and predator avoidance in larval bullfrogs (Rana catesbeiana), J. of Herpetology, 32(2), pp. 289-292. [DOI: 10.2307/1565313]
  42. Relyea, RA (2003). Predator cues and pesticides: a double dose of danger for amphibians, Ecological Applications, 13(6), pp. 1515-1521. [DOI: 10.1890/02-5298]
  43. Relyea, RA (2005). The lethal impacts of Roundup and predatory stress on six species of North American tadpoles, Archives of Environmental Contamination and Toxicology, 48(3), pp. 351-357. [DOI: https://doi.org/10.1007/s00244-004-0086-0]
  44. Relyea, RA and Mills, N (2001). Predator-induced stress makes the pesticide carbaryl more deadly to gray treefrog tadpoles (Hyla versicolor), Proceedings of the National Academy of Sciences, 98(5), pp. 2491-2496. [DOI: 10.1073/pnas.031076198]
  45. Renault, S, Baudrimont, M, Mesmer-Dudons, N, Gonzalez, P, Mornet, S and Brisson, A (2008). Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea), Gold bulletin, 41(2), pp. 116-126. [DOI: https://doi.org/10.1007/BF03216589]
  46. Rodea-Palomares, I, Boltes, K, Fernandez-Pinas, F, Leganes, F, Garcia-Calvo, E, Santiago, J and Rosal, R (2011). Physicochemical characterization and ecotoxicological assessment of $CeO_2$ nanoparticles using two aquatic microorganisms, Toxicological Sciences, 119(1), pp. 135-145. [DOI: https://doi.org/10.1093/toxsci/kfq311]
  47. Seehausen, O, Van Alphen, JJ and Witte, F (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection, Science, 277(5333), pp. 1808-1811. [DOI:10.1126/science.277.5333.1808]
  48. Stauffer, HP and Semlitsch, RD (1993). Effects of visual, chemical and tactile cues of fish on the behavioural responses of tadpoles, Animal Behaviour, 46(2), pp. 355-364. [DOI: https://doi.org/10.1006/anbe.1993.1197]
  49. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010a). Exposure of the blue mussel, Mytilus edulis, to gold nanoparticles and the pro-oxidant menadione, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), pp. pp. 167-174. [DOI: https://doi.org/10.1016/j.cbpc.2009.10.002]
  50. Tedesco, S, Doyle, H, Blasco, J, Redmond, G and Sheehan, D (2010b). Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis, Aquatic Toxicology, 100(2), pp. 178-186. [DOI: https://doi.org/10.1016/j.aquatox.2010.03.001]
  51. Tedesco, S, Doyle, H, Redmond, G and Sheehan, D (2008). Gold nanoparticles and oxidative stress in Mytilus edulis, Marine environmental research, 66(1), pp. 131-133. [DOI: https://doi.org/10.1016/j.marenvres.2008.02.044]
  52. Tervonen, K, Waissi, G, Petersen, EJ, Akkanen, J and Kukkonen, JV (2010). Analysis of fullerene‐$C_{60}$ and kinetic measurements for its accumulation and depuration in Daphnia magna, Environmental Toxicology and Chemistry, 29(5), pp. 1072-1078. [DOI: 10.1002/etc.124]
  53. Thostenson, ET, Ren, Z and Chou, TW (2001). Advances in the science and technology of carbon nanotubes and their composites: a review, Composites science and technology, 61(13), pp. 1899-1912. [DOI: https://doi.org/10.1016/S0266-3538(01)00094-X]
  54. Troyer, RR and Turner, AM (2015). Chemosensory perception of predators by larval amphibians depends on water quality, PloS one, 10(6), pp. e0131516. [DOI: https://doi.org/10.1371/journal.pone.0131516]
  55. Truong, L, Saili, KS, Miller, JM, Hutchison, JE and Tanguay, RL (2012a). Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 155(2), pp. 269-274. [DOI: https://doi.org/10.1016/j.cbpc.2011.09.006]
  56. Truong, L, Zaikova, T, Richman, EK, Hutchison, JE and Tanguay, RL (2012b). Media ionic strength impacts embryonic responses to engineered nanoparticle exposure, Nanotoxicology, 6(7), pp. 691-699. [DOI: https://doi.org/10.3109/17435390.2011.604440]
  57. Van Hoecke, K, De Schamphelaere, KAC, Ali, Z, Zhang, F, Elsaesser, A, Rivera-Gil, P, Parak, WJ, Smagghe, G, Howard, CV and Janssen, CR (2013). Ecotoxicity and uptake of polymer coated gold nanoparticles, Nanotoxicology, 7(1), pp. 37-47. [DOI: https://doi.org/10.3109/17435390.2011.626566]
  58. Waissi-Leinonen, GC, Petersen, EJ, Pakarinen, K, Akkanen, J, Leppanen, MT and Kukkonen, JV (2012). Toxicity of fullerene ($C_{60}$) to sediment‐dwelling invertebrate Chironomus riparius larvae, Environmental Toxicology and Chemistry, 31(9), pp. 2108-2116. [DOI:10.1002/etc.1926]
  59. Wilson, DJ and Lefcort, H (1993). The effect of predator diet on the alarm response of red-legged frog, Rana aurora, tadpoles, Animal Behaviour, 46(5), pp. 1017-1019. [DOI: https://doi.org/10.1006/anbe.1993.1285]
  60. Wolf, MC and Moore, PA (2002). Effects of the herbicide metolachlor on the perception of chemical stimuli by Orconectes rusticus, J. of the North American Benthological Society, 21(3), pp. 457-467. [DOI: https://doi.org/10.2307/1468482]
  61. Zhu, ZJ, Carboni, R, Quercio, MJ, Yan, B, Miranda, OR, Anderton, DL, Arcaro, KF, Rotello, VM and Vachet, RW (2010). Surface properties dictate uptake, distribution, excretion, and toxicity of nanoparticles in fish, Small, 6(20), pp. 2261-2265. [DOI: 10.1002/smll.201000989]