References
- Abadie, S.M., Harris, J.C., Grilli, S.T. and Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117(C05030), DOI:10.1029/2011JC007646.
- Borgman, L.E. (1984). Directional spectrum estimation for the Sxy gauges. Technical Report, CHL-97-24, United States Army Corps of Engineers (USACE) Waterway Experiment Station, Vicksburg, MS, 1-104.
- Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(220)
- Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, 56, 297-312. https://doi.org/10.1016/j.coastaleng.2008.09.002
- Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
- Choi, Y.-K. and Seo, S.-N. (2015). Wave transformation using modified FUNWAVE-TVD numerical model. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 406-418 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.6.406
- Choi, Y.-K., Seo, S.-N., Choi, J.-Y., Shi, F. and Park, K.-S. (2018). Wave prediction in a port using a fully nonlinear Boussinesq wave model. Acta Oceanologica Sinica, accepted.
- Erduran, K.S., Ilic, S. and Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49, 1213-1232. https://doi.org/10.1002/fld.1021
- Harten, A., Lax, P. and van Leer, B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35-61. https://doi.org/10.1137/1025002
- Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking and runup. I: 1D. Journal of Waterway Port Coastal and Ocean Engineering, 126(1), 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
- Kim, D.H., Lynett, P.J. and Socolofsky, S.A. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27, 198-214. https://doi.org/10.1016/j.ocemod.2009.01.005
- Kirby, J,T., Wei, G., Chen, Q., Kennedy, A.B. and Dalrymple, R.A. (1998). FUNWAVE 1.0, Fully nonlinear Boussinesq wave model, Documentation and User's manual. Research report CACR-98-06, University of Delaware.
- Liu, P.L.-F. (1995). Model equations for wave propagation from deep to shallow water. Advances in Coastal and Ocean Engineering, 1, 125-157.
- Lynett, P.J. and Liu, P.L.-F. (2004). A two-layer approach to wave modelling. Proceedings of the Royal Society A, 460(2049), 2637-3669. https://doi.org/10.1098/rspa.2004.1305
- Nwogu, O.G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Technical report ERDC/CHL TR-01-25, U.S. Army Corps of Engineers.
- Roeber, V. and Cheung, K.F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 70, 1-20. https://doi.org/10.1016/j.coastaleng.2012.06.001
- Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42, 337-358. https://doi.org/10.1016/S0378-3839(00)00067-3
- Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. and Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43-44, 36-51. https://doi.org/10.1016/j.ocemod.2011.12.004
- Shi, F., Tehranirad, B., Kirby, J.T., Harris, J.C. and Grilli, S. (2013). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual (Version 2.1 Revision September 2013). Research report NO. CACR-13-XX, University of Delaware.
- Shi, F., Kirby, J.T., Tehranirad, B., Harris, J.C., Choi, Y.-K. and Malej, M. (2016). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual (Version 3.0). Research report NO. CACR-11-03, University of Delaware.
- Shi, F., Malej, M., Smith, J.M. and Kirby, J.T. (2018). Breaking of ship bores in a Boussinesq-type ship-wake model, Coastal Engineering, 132, 1-12. https://doi.org/10.1016/j.coastaleng.2017.11.002
- Suh, K.D. and Dalrymple, R.A. (1993). Application of angular spectrum model to simulation of irregular wave propagation. Journal of Waterway Port Coastal and Ocean Engineering, 119(5), 505-520. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(505)
- Toro, E.F., Spruce, M. and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34. https://doi.org/10.1007/BF01414629
- Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics, A practical introduction, second ed. Springer.
- Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, Ltd.
- Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. Journal of Waterway Port Coastal and Ocean Engineering, 115(2), 269-284. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
- Walkley, M. and Berzins, M. (2002). A finite element method for the two-dimensional extended Boussinesq equations. International Journal for Numerical Methods in Fluids, 39, 865-885. https://doi.org/10.1002/fld.349
- Woo, S.-B. and Liu, P.L.-F. (2004). Finite-element model for modified Boussinesq equations. I:Model development. Journal of Waterway Port Coastal and Ocean Engineering, 130(1), 1-16. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(1)
- Yamamoto, S. and Daiguji, H. (1993). Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Computers & Fluids, 22(2/3), 259-270. https://doi.org/10.1016/0045-7930(93)90058-H
- Yoon, S.B., Cho, Y.-S. and Lee, C. (2004). Effects of breakinginduced currents on refraction-diffraction of irregular waves over submerged shoal. Ocean Engineering, 31, 633-652. https://doi.org/10.1016/j.oceaneng.2003.07.008
- Yoon, S.B., Park, W.K. and Choi, J. (2014). Observation of rip current velocity at an accidental event by using video image analysis. Journal of Coastal Research, Special Issue, 72, 16-21. https://doi.org/10.2112/SI72-004.1
- Zhou, J.G., Causon, D.M., Mingham, C.G. and Ingram, D.M. (2001). The surface gradient method for the treatment of source terms in the shallow-water equations. Journal of Computational Physics, 168, 1-25. https://doi.org/10.1006/jcph.2000.6670