DOI QR코드

DOI QR Code

Comparison of Numerical Solutions by TVD Schemes in Simulations of Irregular Waves Propagating over a Submerged Shoal Using FUNWAVE-TVD Numerical Model

FUNWAVE-TVD 수치모형을 이용한 수중천퇴를 통과하는 불규칙파의 수치모의에서 TVD 기법들에 의한 수치해 비교

  • Choi, Young-Kwang (Task Force for Construction of RV ISABU Support Facility, Korea Institute of Ocean Science and Technology) ;
  • Seo, Seung-Nam (Task Force for Construction of RV ISABU Support Facility, Korea Institute of Ocean Science and Technology)
  • 최영광 (한국해양과학기술원 이사부호기반시설건설사업단) ;
  • 서승남 (한국해양과학기술원 이사부호기반시설건설사업단)
  • Received : 2018.06.13
  • Accepted : 2018.07.18
  • Published : 2018.08.31

Abstract

Numerical convergence and stability of TVD schemes have been applied in the FUNWAVE-TVD model were compared. The fourth order accurate MUSCL-TVD scheme using minmod limiter suggested by Yamamoto and Daiguji (1993), the fourth order accurate MUSCL-TVD scheme using van-Leer limiter suggested by Erduran et al. (2005) and the second order accurate MUSCL-TVD scheme using van-Leer limiter in Zhou et al. (2001) were compared. Comparisons of the numerical scheme were conducted with experimental data of Vincent and Briggs irregular wave experiments. In comparison with the fourth order accurate scheme using van-Leer limiter, the fourth order accurate scheme using minmod limiter is less dissipative but required lower CFL condition for stable numerical solution. On the other hand, the scheme using van-Leer limiter required smaller resolution spatial grid due to numerical dissipation, but relatively higher CFL condition can be used compared to the scheme using minmod limiter. In the breaking wave experiments which were conducted using high resolution spatial grid to reduce numerical dissipation, the characteristic of the schemes can be clearly observed. Numerical instabilities and blow-up of the numerical solutions were found in the irregular wave breaking simulation with the scheme using minmod limiter. However, the simulation can be completed with the scheme using van-Leer limiter, but required low CFL condition. Good agreements with the observed data were also observed in the results using van-Leer limiter.

최근 개발된 FUNWAVE-TVD 파랑모형을 이용하여 적용되어 온 TVD 기법들의 수렴도와 수치적인 안정성을 비교하였다. Yamamoto and Daiguji(1993)의 minmod limiter를 사용하는 4차 정확도의 MUSCL-TVD 기법과 Erduran et al.(2005)의 van-Leer limiter를 사용하는 4차 정확도의 MUSCL-TVD 기법, Zhou et al.(2001)의 van-Leer limiter를 사용하는 2차 정확도의 MUSCL-TVD 기법을 비교하였으며, 수리실험 관측치가 제시되어 있는 Vincent and Briggs(1989)의 불규칙 파랑실험에 적용하였다. 불규칙 파랑의 비쇄파 실험 결과에서 minmod limiter를 사용하는 4차 정확도의 기법은 van-Leer limiter를 사용하는 기법이 요구하는 격자의 크기만큼 세밀한 격자를 요구하지는 않지만, 더 낮은 CFL을 사용해야 안정적인 모의가 가능하였다. 반면에 van-Leer limiter를 사용하는 기법에서는 numerical dissipation을 줄이기 위하여 보다 세밀한 격자를 필요로 하지만 비교적 높은 CFL을 사용할 수 있는 것으로 나타났다. 각 기법의 numerical dissipation의 영향을 최대한 줄이기 위하여 공간격자를 충분히 줄인 쇄파 모의 실험에서는 비쇄파 실험에 비하여 각 기법의 특성이 명확히 나타났다. Numerical dissipation이 상대적으로 작은 minmod limiter를 사용하는 기법으로 모의할 때는 격자를 충분히 줄이면 수치적인 불안정성이 나타나며 수치해가 발산하는 결과를 보였지만, van-Leer limiter를 사용하는 기법에서는 비교적 낮은 CFL을 사용하여 쇄파 모의가 완료되었으며, 관측치를 잘 재현하는 결과를 보였다.

Keywords

References

  1. Abadie, S.M., Harris, J.C., Grilli, S.T. and Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research, 117(C05030), DOI:10.1029/2011JC007646.
  2. Borgman, L.E. (1984). Directional spectrum estimation for the Sxy gauges. Technical Report, CHL-97-24, United States Army Corps of Engineers (USACE) Waterway Experiment Station, Vicksburg, MS, 1-104.
  3. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132(2), 220-230. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(220)
  4. Choi, J., Lim, C.H., Lee, J.I. and Yoon, S.B. (2009). Evolution of waves and currents over a submerged laboratory shoal. Coastal Engineering, 56, 297-312. https://doi.org/10.1016/j.coastaleng.2008.09.002
  5. Choi, J., Kirby, J.T. and Yoon, S.B. (2015). Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions. Coastal Engineering, 101, 17-34. https://doi.org/10.1016/j.coastaleng.2015.04.005
  6. Choi, Y.-K. and Seo, S.-N. (2015). Wave transformation using modified FUNWAVE-TVD numerical model. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 406-418 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.6.406
  7. Choi, Y.-K., Seo, S.-N., Choi, J.-Y., Shi, F. and Park, K.-S. (2018). Wave prediction in a port using a fully nonlinear Boussinesq wave model. Acta Oceanologica Sinica, accepted.
  8. Erduran, K.S., Ilic, S. and Kutija, V. (2005). Hybrid finite-volume finite-difference scheme for the solution of Boussinesq equations. International Journal for Numerical Methods in Fluids, 49, 1213-1232. https://doi.org/10.1002/fld.1021
  9. Harten, A., Lax, P. and van Leer, B. (1983). On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35-61. https://doi.org/10.1137/1025002
  10. Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking and runup. I: 1D. Journal of Waterway Port Coastal and Ocean Engineering, 126(1), 39-47. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  11. Kim, D.H., Lynett, P.J. and Socolofsky, S.A. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27, 198-214. https://doi.org/10.1016/j.ocemod.2009.01.005
  12. Kirby, J,T., Wei, G., Chen, Q., Kennedy, A.B. and Dalrymple, R.A. (1998). FUNWAVE 1.0, Fully nonlinear Boussinesq wave model, Documentation and User's manual. Research report CACR-98-06, University of Delaware.
  13. Liu, P.L.-F. (1995). Model equations for wave propagation from deep to shallow water. Advances in Coastal and Ocean Engineering, 1, 125-157.
  14. Lynett, P.J. and Liu, P.L.-F. (2004). A two-layer approach to wave modelling. Proceedings of the Royal Society A, 460(2049), 2637-3669. https://doi.org/10.1098/rspa.2004.1305
  15. Nwogu, O.G. and Demirbilek, Z. (2001). BOUSS-2D: A Boussinesq wave model for coastal regions and harbors. Technical report ERDC/CHL TR-01-25, U.S. Army Corps of Engineers.
  16. Roeber, V. and Cheung, K.F. (2012). Boussinesq-type model for energetic breaking waves in fringing reef environments. Coastal Engineering, 70, 1-20. https://doi.org/10.1016/j.coastaleng.2012.06.001
  17. Shi, F., Dalrymple, R.A., Kirby, J.T., Chen, Q. and Kennedy, A. (2001). A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering, 42, 337-358. https://doi.org/10.1016/S0378-3839(00)00067-3
  18. Shi, F., Kirby, J.T., Harris, J.C., Geiman, J.D. and Grilli, S.T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43-44, 36-51. https://doi.org/10.1016/j.ocemod.2011.12.004
  19. Shi, F., Tehranirad, B., Kirby, J.T., Harris, J.C. and Grilli, S. (2013). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual (Version 2.1 Revision September 2013). Research report NO. CACR-13-XX, University of Delaware.
  20. Shi, F., Kirby, J.T., Tehranirad, B., Harris, J.C., Choi, Y.-K. and Malej, M. (2016). FUNWAVE-TVD, Fully nonlinear Boussinesq wave model with TVD solver, Documentation and User's manual (Version 3.0). Research report NO. CACR-11-03, University of Delaware.
  21. Shi, F., Malej, M., Smith, J.M. and Kirby, J.T. (2018). Breaking of ship bores in a Boussinesq-type ship-wake model, Coastal Engineering, 132, 1-12. https://doi.org/10.1016/j.coastaleng.2017.11.002
  22. Suh, K.D. and Dalrymple, R.A. (1993). Application of angular spectrum model to simulation of irregular wave propagation. Journal of Waterway Port Coastal and Ocean Engineering, 119(5), 505-520. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:5(505)
  23. Toro, E.F., Spruce, M. and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34. https://doi.org/10.1007/BF01414629
  24. Toro, E.F. (1999). Riemann solvers and numerical methods for fluid dynamics, A practical introduction, second ed. Springer.
  25. Toro, E.F. (2001). Shock-capturing methods for free-surface shallow flows. John Wiley & Sons, Ltd.
  26. Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. Journal of Waterway Port Coastal and Ocean Engineering, 115(2), 269-284. https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  27. Walkley, M. and Berzins, M. (2002). A finite element method for the two-dimensional extended Boussinesq equations. International Journal for Numerical Methods in Fluids, 39, 865-885. https://doi.org/10.1002/fld.349
  28. Woo, S.-B. and Liu, P.L.-F. (2004). Finite-element model for modified Boussinesq equations. I:Model development. Journal of Waterway Port Coastal and Ocean Engineering, 130(1), 1-16. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:1(1)
  29. Yamamoto, S. and Daiguji, H. (1993). Higher-order-accurate upwind schemes for solving the compressible Euler and Navier-Stokes equations. Computers & Fluids, 22(2/3), 259-270. https://doi.org/10.1016/0045-7930(93)90058-H
  30. Yoon, S.B., Cho, Y.-S. and Lee, C. (2004). Effects of breakinginduced currents on refraction-diffraction of irregular waves over submerged shoal. Ocean Engineering, 31, 633-652. https://doi.org/10.1016/j.oceaneng.2003.07.008
  31. Yoon, S.B., Park, W.K. and Choi, J. (2014). Observation of rip current velocity at an accidental event by using video image analysis. Journal of Coastal Research, Special Issue, 72, 16-21. https://doi.org/10.2112/SI72-004.1
  32. Zhou, J.G., Causon, D.M., Mingham, C.G. and Ingram, D.M. (2001). The surface gradient method for the treatment of source terms in the shallow-water equations. Journal of Computational Physics, 168, 1-25. https://doi.org/10.1006/jcph.2000.6670