DOI QR코드

DOI QR Code

연약암반내 패널채광시 강지보를 이용한 패널 유지기간의 확률론적 평가

Probabilistic Evaluation of the Panel Life Time Using Steel Beam for Panel Mining in Soft Rock

  • 장명환 (한국광물자원공사 자원개발기술팀)
  • 투고 : 2018.08.06
  • 심사 : 2018.08.17
  • 발행 : 2018.08.31

초록

${\bigcirc}{\bigcirc}$광산은 연약한 암반특성에서 2차, 3차 채광을 하기 위한 다양한 방법이 시도되었다. 이러한 채광을 위해서는 패널형태로 채광구획을 나누고 패널채광을 하는 동안 패널이 유지되어야 한다. 본 과업에서는 패널 사이의 채광갱도를 강지보에 의하여 유지하고 확률론적으로 패널의 유지기간을 평가하였다. 패널 유지기간 평가를 위하여 Taylor 식을 이용하고, Pert 분포를 개념적으로 변형하여 적용하였다. 주요 입력자료는 Pert 분포에 의하여 결정하고 Monte Carlo 시뮬레이션을 실시하여 확률분포에 대한 패널의 유지기간을 평가하였다. 그 결과 패널폭 18-25 m일 경우 최소 6.5일에서 최대 20.6일 까지 패널의 자립이 가능한 것으로 분석되었다. 신뢰수준 90%에서 무지보 유지기간은 8.2-15.6일 정도로 분석되었다. 이러한 짧은 패널의 유지기간은 패널채광이 불가능하기 때문에 패널의 유지를 위하여 강지보를 계획하였다. 그 결과 광산별 3년 이내의 채광계획으로 패널유지를 위한 강지보를 적용하면, 90% 신뢰수준 내에서 패널의 유지가 가능한 것으로 분석되었다.

The ${\bigcirc}{\bigcirc}$ mines have been tried in various ways to perform secondary and tertiary mining in fragile rock properties. For such mining, the panels should be maintained while the mining compartments are divided and paneled. In this study, the mining gate between the panels was maintained by a steel beam and the panel life time was probabilistic evaluated. We used Taylor's formula for panel life time and modified the Pert distribution conceptually. The main input data were determined by the Pert distribution, and Monte Carlo simulation was performed to evaluate the panel life time for the probability distribution. As a result, it was analyzed that the panels could be stand-up time from a minimum of 6.5 days to a maximum of 20.6 days when the panel width was 18 to 25 m. At the confidence level of 90%, the panel life time was analyzed as 8.2-15.6 days. The short panel life time is not possible with the panel mining. Therefore, it was planned to construct a steel beam for panel maintenance. As result, it was analyzed that steel beam for panel maintenance with mining plan of less than 3 years according to mine could maintain panel within 90% confidence level.

키워드

참고문헌

  1. 이인모, 2007, 터널의 지반공학적 원리, 씨아이알, 33-64.
  2. Bieniawski, Z.T., 1994, An assessment of safety factors for the bieniawski pillar strength formula with special reference to mine subsidence, Report of investigation to Kentucky Department for Surface Mining Reclamation and Enforcement, 103p.
  3. Hoek, E., 2012, Rock-Support Interaction analysis for tunnels in weak rock masses, Technical note, 19p.
  4. Jang, M.H., 2018a, Creep behavior of unconsolidated rock with mathematical concept solution, Tunnel and Underground Space, 28.1, 25-37. https://doi.org/10.7474/TUS.2018.28.1.025
  5. Jang, M.H., 2018b, A study on the stratum thickness arrangement and roofbolt support design using robust design, Tunnel and Underground Space, 28.2, 142-155. https://doi.org/10.7474/TUS.2018.28.2.142
  6. Jang, M.H., T.H. Ha and H.S. Jeong, 2018, Optimized design of mine span considering the characteristics of rockmass in soft ground, Tunnel and Underground Space, 28.2, 125-141. https://doi.org/10.7474/TUS.2018.28.2.125
  7. Palisade Co., 2010, "Guide to using @RISK, Risk analysis and simulation add-in for Microsoft Excel", 693p.
  8. Taylor, J.A., Fowell, R.J., 2003, Estimating the in-situ mass strength and time to failure of coal pillars in bord and pillar workings, ISRM South African Institute of Mining and Metallurgy, 1203-1208.
  9. Unal, E., 1992, Rock reinforcement design and its application in mining, Proc. International Symposium on Rock Support, 541-546.
  10. Vankateswarlu, V., 1986, Geomechanics classification of coal measure rocks vis-a-vis roof support, Engineering Rock Mass Classification (ed. Bieniawski, Z.T.), John Wiley & Sons.