DOI QR코드

DOI QR Code

Enhanced Grid-Based Trajectory Cloaking Method for Efficiency Search and User Information Protection in Location-Based Services

위치기반 서비스에서 효율적 검색과 사용자 정보보호를 위한 향상된 그리드 기반 궤적 클로킹 기법

  • 윤지혜 (원광대학교 정보통신공학과) ;
  • 송두희 (원광대학교 공업기술개발연구소) ;
  • 채천원 (원광대학교 정보통신공학과) ;
  • 박광진 (원광대학교 정보통신공학과)
  • Received : 2018.04.17
  • Accepted : 2018.07.04
  • Published : 2018.08.31

Abstract

With the development of location-based applications such as smart phones and GPS navigation, active research is being conducted to protect location and trajectory privacy. To receive location-related services, users must disclose their exact location to the server. However, disclosure of users' location exposes not only their locations but also their trajectory to the server, which can lead to concerns of privacy violation. Furthermore, users request from the server not only location information but also multimedia information (photographs, reviews, etc. of the location), and this increases the processing cost of the server and the information to be received by the user. To solve these problems, this study proposes the EGTC (Enhanced Grid-based Trajectory Cloaking) technique. As with the existing GTC (Grid-based Trajectory Cloaking) technique, EGTC method divides the user trajectory into grids at the user privacy level (UPL) and creates a cloaking region in which a random query sequence is determined. In the next step, the necessary information is received as index by considering the sub-grid cell corresponding to the path through which the user wishes to move as c(x,y). The proposed method ensures the trajectory privacy as with the existing GTC method while reducing the amount of information the user must listen to. The excellence of the proposed method has been proven through experimental results.

스마트폰, GPS 네비게이션과 같은 위치 응용프로그램이 발달함에 따라 위치 및 궤적 프라이버시를 보호하기 위한 연구가 활발히 진행되고 있다. 위치 관련 서비스를 제공받기 위해서는 자신의 정확한 위치를 서버에게 공개해야 한다. 그러나 사용자 위치의 공개는 서버에게 자신의 위치뿐만 아니라 궤적까지 노출하게 되어 사생활 침해의 우려가 있다. 또한 사용자가 서버에게 요청한 정보는 위치 정보뿐만 아니라 멀티미디어 정보(위치에 대한 사진, 리뷰 등)를 포함하고 있기 때문에 서버가 처리해야 하는 비용 및 사용자가 받아야하는 정보가 증가하게 된다. 따라서 이를 해결하기 위해 본 논문에서는 EGTC (Enhanced Grid-based Trajectory Cloaking) 기법을 제안한다. EGTC 기법은 기존 GTC (Grid-based Trajectory Cloaking) 기법과 마찬가지로 사용자 궤적을 사용자가 원하는 프라이버시 레벨(UPL: User's desired Privacy Level) 수준으로 그리드를 분할하여 클로킹 영역을 생성 한 후, 랜덤한 질의 순서를 정한다. 다음 단계로 사용자가 이동하고자 하는 경로에 해당하는 서브 그리드 셀을 c(x,y)로 간주해 필요한 정보를 색인으로 구성해 받는다. 제안 기법은 기존 GTC 기법과 같이 궤적 프라이버시를 보장하면서 사용자가 청취해야 하는 정보의 양을 줄였다. 실험 결과를 통하여 제안 기법의 우수성을 증명하였다.

Keywords

References

  1. D. Song, J. Sim, K. Park, and M. Song, "A Privacy-Preserving Continuous Location Monitoring System for Location-Based Services," International Journal of Distributed Sensor Networks, Vol. 2015, pp. 1-10, 2015.
  2. K. Park and P. Valduriez, "A Hierarchical Grid Index (HGI), spatial queries in wireless data broadcasting," Springer Distributed and Parallel Databases, Vol. 31, No. 3, pp. 413-446, 2013. https://doi.org/10.1007/s10619-013-7121-y
  3. C. Y. Chow and M. F. Mokbel, “Trajectory Privacy in Location-based Services and Data Publication,” ACM SIGKDD Explorations Newsletter, Vol. 13, No. 1, pp. 19-29, 2011. https://doi.org/10.1145/2031331.2031335
  4. J. Youn, D. Song, T. Cai, and K. Park, “Grid-based Trajectory Cloaking Method for protecting Trajectory privacy in Location-based Services,” Korean Society for Internet Information, Vol. 18, No. 5, pp. 1-6, 2017.
  5. D. Liao, H. Li, G. Sun, and V. Anand, "Protecting User Trajectory in Location-Based Services," IEEE Global Communications Conference, 2015.
  6. M. E. Nergiz, M. Atzori, Y. Saygin, and B. Guc, "Towards trajectory anonymization : a generalization-based approach," SIGSPATIAL ACM GIS Transactions on Data Privacy 2, pp. 47-75, 2008.
  7. R. H. Hwang, Y. L. Hsueh, and H. Chung, “A Novel Time-Obfuscated Algorithm for Trajectory Privacy Protection,” IEEE Transactions on Services Computing, Vol. 7, No. 2, pp. 126-139, 2014. https://doi.org/10.1109/TSC.2013.55
  8. H. Zhao, J. Wan, and Z. Chen, “A Novel Dummy-Based KNN Query Anonymization Method in Mobile Services,” International Journal of Smart Home, Vol. 10, No. 6, pp. 137-154, 2016.
  9. P. R. Lei, W. C. Peng, I. J. Su, and C. P. Chang, “Dummy-Based Schemes for Protecting Movement Trajectories,” Journal of Information Science and Engineering, Vol. 28, No. 2, pp. 335-350, 2012.
  10. J. Dai and L. Hua, "A method for the trajectory privacy protection based on the segmented fake trajectory under road networks," IEEE International Conference on Information Science and Control Engineering, pp. 13-17, 2015.
  11. P. P. Lindenberg, B. C. Cheng, and Y. L. Hsueh, "Novel Location Privacy protection strategies for location-based services," IEEE International Conference on Ubiquitous and Future Networks, pp. 866-870, 2015.
  12. Z. Huo, X. Meng, H. Hu, and Y. Huang, "You Can Walk Alone Trajectory Privacy-preserving through Significant Stays Protection," Springer International Conference on DASFAA, Vol. 7238, pp. 351-366, 2012.
  13. V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie, "Time Distortion Anonymization for the Publication of Mobility Data with High Utility," IEEE Turstcom/ BigDataSE/ISPA, pp. 539-546, 2015.
  14. Y. Xin, Z. Q. Xie, and J. Yang, "The privacy preserving method for dynamic trajectory releasing based on adaptive clustering," ELSEVIER Information Sciences, Vol. 378, pp. 131-143, 2017. https://doi.org/10.1016/j.ins.2016.10.038
  15. T. lmielinski, S. Viswanathan, and B. R. Badrinath, “Data on air : organization and access,” IEEE Transactions on Knowledge and Data Engineering, Vol. 9, No. 3, pp. 353-372, 1997. https://doi.org/10.1109/69.599926
  16. B. Zheng, W. C. Lee, and D. L. Lee, "Spatial queries in wireless broadcast systems," ACM Jornal Wireless Networks-Special issue: Pervasive Computing and Communications, Vol. 10, No. 6 pp. 723-736. 2004.
  17. D. Song and K. Park, "A partial index for distributed broadcasting in wireless mobile networks," ELSEVIER Information Sciences, Vol. 348, pp. 142-152, 2016. https://doi.org/10.1016/j.ins.2016.02.011
  18. W. Sun, C. Chen, B. Zheng, C. Chen, and P. Liu, “An Air Index for Spatial Query Processing in Road Networks,” IEEE Transaction on Knowledge and Data Engineering, Vol. 27, No. 2, pp. 382-395, 2015. https://doi.org/10.1109/TKDE.2014.2330836
  19. Y. Ten, W. Wang, J. Wu, Q. Kou, Z. Song, and E. C.-H. Nagi, “Privacy-Preserving Social Tie Discovery Based on Cloaked Human Trajectories,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, pp. 1619-1630, 2017. https://doi.org/10.1109/TVT.2016.2554608
  20. H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation,” IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 11, pp. 2537-2551, 2017. https://doi.org/10.1109/TKDE.2017.2741484
  21. M. Terroviti, G. Poulis, N. Mamoulis, and S. Skiadopoulos, “Local Suppression and Splitting Techniques for Privacy Preserving Publication of Trajectorie,” IEEE Transactions on Knowledge and Data Engineering, Vol. 29, No. 7, pp. 1466-1479, 2017. https://doi.org/10.1109/TKDE.2017.2675420
  22. B. Niu, S. Gao, F. Li, H. Li, and Z. Lu, "Protection of location privacy in continuous LBSs against adversaries with background information," IEEE International Conference on Computing Networking and Communications, 2016.
  23. W. C. Hu, S. H. Mousavinezhad, N. Kaabouch, and H. J. Yang, "Privacy-Preserving Spatial Trajectory Prediction," IEEE Conference Wireless Research Collaboration Symposium, pp. 69-73, 2014.