DOI QR코드

DOI QR Code

A plasma circulating miRNAs profile predicts type 2 diabetes mellitus and prediabetes: from the CORDIOPREV study

  • Jimenez-Lucena, Rosa (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Camargo, Antonio (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Alcala-Diaz, Juan Francisco (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Romero-Baldonado, Cristina (Biochemical Laboratory, Reina Sofia University Hospital) ;
  • Luque, Raul Miguel (IMIBIC/Reina Sofia University Hospital, University of Cordoba and CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III) ;
  • van Ommen, Ben (Netherlands Institute for Applied Science (TNO), Research Group Microbiology and Systems Biology) ;
  • Delgado-Lista, Javier (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Ordovas, Jose Maria (Nutrition and Genomics Laboratory, J.M, US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University) ;
  • Perez-Martinez, Pablo (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Rangel-Zuniga, Oriol Alberto (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital) ;
  • Lopez-Miranda, Jose (Lipids and Atherosclerosis Unit, Reina Sofia University Hospital)
  • Received : 2017.10.13
  • Accepted : 2018.09.19
  • Published : 2018.12.30

Abstract

We aimed to explore whether changes in circulating levels of miRNAs according to type 2 diabetes mellitus (T2DM) or prediabetes status could be used as biomarkers to evaluate the risk of developing the disease. The study included 462 patients without T2DM at baseline from the CORDIOPREV trial. After a median follow-up of 60 months, 107 of the subjects developed T2DM, 30 developed prediabetes, 223 maintained prediabetes and 78 remained disease-free. Plasma levels of four miRNAs related to insulin signaling and beta-cell function were measured by RT-PCR. We analyzed the relationship between miRNAs levels and insulin signaling and release indexes at baseline and after the follow-up period. The risk of developing disease based on tertiles (T1-T2-T3) of baseline miRNAs levels was evaluated by COX analysis. Thus, we observed higher miR-150 and miR-30a-5p and lower miR-15a and miR-375 baseline levels in subjects with T2DM than in disease-free subjects. Patients with high miR-150 and miR-30a-5p baseline levels had lower disposition index (p = 0.047 and p = 0.007, respectively). The higher risk of disease was associated with high levels (T3) of miR-150 and miR-30a-5p ($HR_{T3-T1}=4.218$ and $HR_{T3-T1}=2.527$, respectively) and low levels (T1) of miR-15a and miR-375 ($HR_{T1-T3}=3.269$ and $HR_{T1-T3}=1.604$, respectively). In conclusion, our study showed that deregulated plasma levels of miR-150, miR-30a-5p, miR-15a, and miR-375 were observed years before the onset of T2DM and pre-DM and could be used to evaluate the risk of developing the disease, which may improve prediction and prevention among individuals at high risk for T2DM.

Keywords

References

  1. United Nations. Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Noncommunicable Diseases. (Sixtysixth session of the United Nations General Assembly, New York, 2011).
  2. Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802-1812 (2006). https://doi.org/10.1172/JCI29103
  3. Van Ommen, B., van der Greef, J., Ordovas, J. M. & Daniel, H. Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr. 9, 423-431 (2014). https://doi.org/10.1007/s12263-014-0423-5
  4. American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 40, S11-S24 (2017). https://doi.org/10.2337/dc17-S005
  5. Kanat, M. et al. Distinct beta-cell defects in mpaired fasting glucose and impaired glucose tolerance. Diabetes 61, 447-453 (2012). https://doi.org/10.2337/db11-0995
  6. Burant, C. & Young, L. Medical Managements of Type 2 Diabetes Mellitus, 7th edn. (American Diabetes Association, Arlington, 2012).
  7. Giugliano, D., Ceriello, A. & Esposito, K. Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr. 87, 217S-222S (2008). https://doi.org/10.1093/ajcn/87.1.217S
  8. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1), S62-S67 (2009). https://doi.org/10.2337/dc09-S062
  9. Sebastiani, G. et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J. Endocrinol. Invest. 40, 591-610 (2017). https://doi.org/10.1007/s40618-017-0611-4
  10. Seyhan, A. A. et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci. Rep. 6, e31479 (2016). https://doi.org/10.1038/srep31479
  11. Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9, 831-842 (2008).
  12. Kim, J. W. et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56, 847-855 (2013). https://doi.org/10.1007/s00125-012-2812-x
  13. Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6, e22839 (2011). https://doi.org/10.1371/journal.pone.0022839
  14. Al-Kafaji, G. et al. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol. Med. Rep. 12, 7485-7490 (2015). https://doi.org/10.3892/mmr.2015.4416
  15. Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271-E2276 (2012). https://doi.org/10.1210/jc.2012-1996
  16. Kong, L. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 48, 61-69 (2011). https://doi.org/10.1007/s00592-010-0226-0
  17. Chen, W. M. et al. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins. PLoS. One. 11, e0154672 (2016). https://doi.org/10.1371/journal.pone.0154672
  18. Willeit, P. et al. Circulating MicroRNA-122 Is Associated With the Risk of New- Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 66, 347-357 (2017). https://doi.org/10.2337/db16-0731
  19. Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR- 126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810-817 (2010). https://doi.org/10.1161/CIRCRESAHA.110.226357
  20. Delgado-Lista, J. et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: a clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am. Heart J. 177, 42-50 (2016). https://doi.org/10.1016/j.ahj.2016.04.011
  21. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62-S69 (2011). https://doi.org/10.2337/dc11-S062
  22. Blanco-Rojo R. et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia https://doi.org/10.1007/s00125-015-3776-4 (2015).
  23. Nathan, D. M. et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753-759 (2007). https://doi.org/10.2337/dc07-9920
  24. Lauritzen, T., Sandbaek, A., Skriver, M. V. & Borch-Johnsen, K. HbA1c and cardiovascular risk score identify people who may benefit from preventive interventions: a 7 year follow-up of a high-risk screening programme for diabetes in primary care (ADDITION), Denmark. Diabetologia 54, 1318-1326 (2011). https://doi.org/10.1007/s00125-011-2077-9
  25. Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470-475 (1974).
  26. Bucolo, G. & David, H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19, 476-482 (1973).
  27. Briggs, C. J., Anderson, D., Johnson, P. & Deegan, T. Evaluation of the polyethylene glycol precipitation method for the estimation of high-density lipoprotein cholesterol. Ann. Clin. Biochem. 18, 177-181 (1981). https://doi.org/10.1177/000456328101800309
  28. Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462-1470 (1999). https://doi.org/10.2337/diacare.22.9.1462
  29. Song, Y. et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30, 1747-1752 (2007). https://doi.org/10.2337/dc07-0358
  30. Hanson, R. L. et al. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am. J. Epidemiol. 151, 190-198 (2000). https://doi.org/10.1093/oxfordjournals.aje.a010187
  31. Tang, W. et al. The association between serum uric acid and residual beta -cell function in type 2 diabetes. J. Diabetes Res. 2014, 709691 (2014).
  32. Abdul-Ghani, M. A., Matsuda, M., Balas, B. & DeFronzo, R. A. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30, 89-94 (2007). https://doi.org/10.2337/dc06-1519
  33. Plaisance, V., Waeber, G., Regazzi, R. & Abderrahmani, A. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J. Diabetes Res. 2014, 1-12 (2014).
  34. Poy, M. N. et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl Acad. Sci. USA 106, 5813-5818 (2009). https://doi.org/10.1073/pnas.0810550106
  35. Sun, L. L. et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91, 94-100 (2011). https://doi.org/10.1016/j.diabres.2010.11.006
  36. Xia, H. Q., Pan, Y., Peng, J. & Lu, G. X. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol. Biol. Rep. 38, 3061-3065 (2011). https://doi.org/10.1007/s11033-010-9973-9
  37. Ying, W. et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci. Rep. 6, 20176 (2016). https://doi.org/10.1038/srep20176
  38. Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245-5250 (2004). https://doi.org/10.1158/0008-5472.CAN-04-0496
  39. Danese, E. et al. Reference miRNAs for colorectal cancer: analysis and verification of current data. Sci. Rep. 7, 8413 (2017). https://doi.org/10.1038/s41598-017-08784-3
  40. De Spiegelaere, W. et al. Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE 10, e0122515 (2015). https://doi.org/10.1371/journal.pone.0122515
  41. Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509-515 (2004). https://doi.org/10.1023/B:BILE.0000019559.84305.47
  42. Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733-1741 (2010). https://doi.org/10.1373/clinchem.2010.147405
  43. Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 9, 513-521 (2013). https://doi.org/10.1038/nrendo.2013.86
  44. Jansen, F. et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc. 3, e001249 (2014).
  45. Kantharidis, P., Wang, B., Carew, R. M. & Lan, H. Y. Diabetes complications: the microRNA perspective. Diabetes 60, 1832-1837 (2011). https://doi.org/10.2337/db11-0082
  46. Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60, 1825-1831 (2011). https://doi.org/10.2337/db11-0171
  47. Tang, X., Tang, G. & Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779, 697-701 (2008). https://doi.org/10.1016/j.bbagrm.2008.06.010
  48. Chan, C. B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302-1310 (2001). https://doi.org/10.2337/diabetes.50.6.1302
  49. Naya, F. J., Stellrecht, C. M. & Tsai, M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009-1019 (1995). https://doi.org/10.1101/gad.9.8.1009
  50. Kim, J. W. et al. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol. Endocrinol. 16, 1097-1107 (2002). https://doi.org/10.1210/mend.16.5.0934
  51. El Ouaamari, A. et al. miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57, 2708-2717 (2008). https://doi.org/10.2337/db07-1614

Cited by

  1. Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder vol.12, pp.None, 2018, https://doi.org/10.3389/fnmol.2019.00253
  2. MikroRNAs als Biomarker für ein erhöhtes Typ-2-Diabetes-Risiko vol.13, pp.2, 2019, https://doi.org/10.1007/s15034-019-1468-8
  3. Extracellular Vesicle Encapsulated MicroRNAs in Patients with Type 2 Diabetes Are Affected by Metformin Treatment vol.8, pp.5, 2018, https://doi.org/10.3390/jcm8050617
  4. Biomarkers for type 2 diabetes vol.27, pp.suppl, 2018, https://doi.org/10.1016/j.molmet.2019.06.016
  5. Non-coding RNAs - A primer for the laboratory scientist vol.76, pp.4, 2019, https://doi.org/10.1080/09674845.2019.1675847
  6. Circulating microRNA changes in patients with impaired glucose regulation vol.9, pp.1, 2018, https://doi.org/10.1080/21623945.2020.1798632
  7. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/3816056
  8. Effect of diabetes on exosomal miRNA profile in patients with obesity vol.8, pp.1, 2020, https://doi.org/10.1136/bmjdrc-2020-001403
  9. Nutritional genomics, inflammation and obesity vol.64, pp.3, 2018, https://doi.org/10.20945/2359-3997000000255
  10. Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets vol.21, pp.18, 2018, https://doi.org/10.3390/ijms21186750
  11. Modern Aspects of the Clinic, Diagnosis and Treatment of Prediabetes vol.10, pp.5, 2020, https://doi.org/10.20514/2226-6704-2020-10-5-327-339
  12. Inflexibility of the plasma miRNA response following a high-carbohydrate meal in overweight insulin-resistant women vol.15, pp.1, 2018, https://doi.org/10.1186/s12263-020-0660-8
  13. The circRNA-miRNA-mRNA regulatory network in systemic lupus erythematosus vol.40, pp.1, 2021, https://doi.org/10.1007/s10067-020-05212-2
  14. MicroRNAs, Parkinson’s Disease, and Diabetes Mellitus vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22062953
  15. MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus vol.10, pp.6, 2021, https://doi.org/10.3390/biology10060534
  16. Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147716
  17. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures vol.42, pp.5, 2021, https://doi.org/10.1210/endrev/bnab021
  18. MIRNAS as biomarkers for diagnosis of type 2 diabetes: A systematic review vol.13, pp.10, 2018, https://doi.org/10.1111/1753-0407.13166
  19. miRetrieve-an R package and web application for miRNA text mining vol.3, pp.4, 2018, https://doi.org/10.1093/nargab/lqab117
  20. Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer vol.178, pp.None, 2018, https://doi.org/10.1016/j.addr.2021.113918
  21. Metabolic Dysfunction Biomarkers as Predictors of Early Diabetes vol.11, pp.11, 2018, https://doi.org/10.3390/biom11111589
  22. Bisphenol A induces miR-708-5p through an ER stress-mediated mechanism altering neuronatin and neuropeptide Y expression in hypothalamic neuronal models vol.539, pp.None, 2018, https://doi.org/10.1016/j.mce.2021.111480