References
- United Nations. Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Noncommunicable Diseases. (Sixtysixth session of the United Nations General Assembly, New York, 2011).
- Prentki, M. & Nolan, C. J. Islet beta cell failure in type 2 diabetes. J. Clin. Invest. 116, 1802-1812 (2006). https://doi.org/10.1172/JCI29103
- Van Ommen, B., van der Greef, J., Ordovas, J. M. & Daniel, H. Phenotypic flexibility as key factor in the human nutrition and health relationship. Genes Nutr. 9, 423-431 (2014). https://doi.org/10.1007/s12263-014-0423-5
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 40, S11-S24 (2017). https://doi.org/10.2337/dc17-S005
- Kanat, M. et al. Distinct beta-cell defects in mpaired fasting glucose and impaired glucose tolerance. Diabetes 61, 447-453 (2012). https://doi.org/10.2337/db11-0995
- Burant, C. & Young, L. Medical Managements of Type 2 Diabetes Mellitus, 7th edn. (American Diabetes Association, Arlington, 2012).
- Giugliano, D., Ceriello, A. & Esposito, K. Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr. 87, 217S-222S (2008). https://doi.org/10.1093/ajcn/87.1.217S
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1), S62-S67 (2009). https://doi.org/10.2337/dc09-S062
- Sebastiani, G. et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J. Endocrinol. Invest. 40, 591-610 (2017). https://doi.org/10.1007/s40618-017-0611-4
- Seyhan, A. A. et al. Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Sci. Rep. 6, e31479 (2016). https://doi.org/10.1038/srep31479
- Flynt, A. S. & Lai, E. C. Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9, 831-842 (2008).
- Kim, J. W. et al. miRNA-30a-5p-mediated silencing of Beta2/NeuroD expression is an important initial event of glucotoxicity-induced beta cell dysfunction in rodent models. Diabetologia 56, 847-855 (2013). https://doi.org/10.1007/s00125-012-2812-x
- Karolina, D. S. et al. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6, e22839 (2011). https://doi.org/10.1371/journal.pone.0022839
- Al-Kafaji, G. et al. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol. Med. Rep. 12, 7485-7490 (2015). https://doi.org/10.3892/mmr.2015.4416
- Karolina, D. S. et al. Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97, E2271-E2276 (2012). https://doi.org/10.1210/jc.2012-1996
- Kong, L. et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 48, 61-69 (2011). https://doi.org/10.1007/s00592-010-0226-0
- Chen, W. M. et al. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins. PLoS. One. 11, e0154672 (2016). https://doi.org/10.1371/journal.pone.0154672
- Willeit, P. et al. Circulating MicroRNA-122 Is Associated With the Risk of New- Onset Metabolic Syndrome and Type 2 Diabetes. Diabetes 66, 347-357 (2017). https://doi.org/10.2337/db16-0731
- Zampetaki, A. et al. Plasma microRNA profiling reveals loss of endothelial miR- 126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810-817 (2010). https://doi.org/10.1161/CIRCRESAHA.110.226357
- Delgado-Lista, J. et al. CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (the CORDIOPREV study): Rationale, methods, and baseline characteristics: a clinical trial comparing the efficacy of a Mediterranean diet rich in olive oil versus a low-fat diet on cardiovascular disease in coronary patients. Am. Heart J. 177, 42-50 (2016). https://doi.org/10.1016/j.ahj.2016.04.011
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62-S69 (2011). https://doi.org/10.2337/dc11-S062
- Blanco-Rojo R. et al. The insulin resistance phenotype (muscle or liver) interacts with the type of diet to determine changes in disposition index after 2 years of intervention: the CORDIOPREV-DIAB randomised clinical trial. Diabetologia https://doi.org/10.1007/s00125-015-3776-4 (2015).
- Nathan, D. M. et al. Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care 30, 753-759 (2007). https://doi.org/10.2337/dc07-9920
- Lauritzen, T., Sandbaek, A., Skriver, M. V. & Borch-Johnsen, K. HbA1c and cardiovascular risk score identify people who may benefit from preventive interventions: a 7 year follow-up of a high-risk screening programme for diabetes in primary care (ADDITION), Denmark. Diabetologia 54, 1318-1326 (2011). https://doi.org/10.1007/s00125-011-2077-9
- Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W. & Fu, P. C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20, 470-475 (1974).
- Bucolo, G. & David, H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19, 476-482 (1973).
- Briggs, C. J., Anderson, D., Johnson, P. & Deegan, T. Evaluation of the polyethylene glycol precipitation method for the estimation of high-density lipoprotein cholesterol. Ann. Clin. Biochem. 18, 177-181 (1981). https://doi.org/10.1177/000456328101800309
- Matsuda, M. & DeFronzo, R. A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462-1470 (1999). https://doi.org/10.2337/diacare.22.9.1462
- Song, Y. et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care 30, 1747-1752 (2007). https://doi.org/10.2337/dc07-0358
- Hanson, R. L. et al. Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am. J. Epidemiol. 151, 190-198 (2000). https://doi.org/10.1093/oxfordjournals.aje.a010187
- Tang, W. et al. The association between serum uric acid and residual beta -cell function in type 2 diabetes. J. Diabetes Res. 2014, 709691 (2014).
- Abdul-Ghani, M. A., Matsuda, M., Balas, B. & DeFronzo, R. A. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30, 89-94 (2007). https://doi.org/10.2337/dc06-1519
- Plaisance, V., Waeber, G., Regazzi, R. & Abderrahmani, A. Role of microRNAs in islet beta-cell compensation and failure during diabetes. J. Diabetes Res. 2014, 1-12 (2014).
- Poy, M. N. et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl Acad. Sci. USA 106, 5813-5818 (2009). https://doi.org/10.1073/pnas.0810550106
- Sun, L. L. et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res. Clin. Pract. 91, 94-100 (2011). https://doi.org/10.1016/j.diabres.2010.11.006
- Xia, H. Q., Pan, Y., Peng, J. & Lu, G. X. Over-expression of miR375 reduces glucose-induced insulin secretion in Nit-1 cells. Mol. Biol. Rep. 38, 3061-3065 (2011). https://doi.org/10.1007/s11033-010-9973-9
- Ying, W. et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci. Rep. 6, 20176 (2016). https://doi.org/10.1038/srep20176
- Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245-5250 (2004). https://doi.org/10.1158/0008-5472.CAN-04-0496
- Danese, E. et al. Reference miRNAs for colorectal cancer: analysis and verification of current data. Sci. Rep. 7, 8413 (2017). https://doi.org/10.1038/s41598-017-08784-3
- De Spiegelaere, W. et al. Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE 10, e0122515 (2015). https://doi.org/10.1371/journal.pone.0122515
- Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper--Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509-515 (2004). https://doi.org/10.1023/B:BILE.0000019559.84305.47
- Weber, J. A. et al. The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733-1741 (2010). https://doi.org/10.1373/clinchem.2010.147405
- Guay, C. & Regazzi, R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat. Rev. Endocrinol. 9, 513-521 (2013). https://doi.org/10.1038/nrendo.2013.86
- Jansen, F. et al. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc. 3, e001249 (2014).
- Kantharidis, P., Wang, B., Carew, R. M. & Lan, H. Y. Diabetes complications: the microRNA perspective. Diabetes 60, 1832-1837 (2011). https://doi.org/10.2337/db11-0082
- Fernandez-Valverde, S. L., Taft, R. J. & Mattick, J. S. MicroRNAs in beta-cell biology, insulin resistance, diabetes and its complications. Diabetes 60, 1825-1831 (2011). https://doi.org/10.2337/db11-0171
- Tang, X., Tang, G. & Ozcan, S. Role of microRNAs in diabetes. Biochim. Biophys. Acta 1779, 697-701 (2008). https://doi.org/10.1016/j.bbagrm.2008.06.010
- Chan, C. B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302-1310 (2001). https://doi.org/10.2337/diabetes.50.6.1302
- Naya, F. J., Stellrecht, C. M. & Tsai, M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9, 1009-1019 (1995). https://doi.org/10.1101/gad.9.8.1009
- Kim, J. W. et al. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol. Endocrinol. 16, 1097-1107 (2002). https://doi.org/10.1210/mend.16.5.0934
- El Ouaamari, A. et al. miR-375 targets 3’-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57, 2708-2717 (2008). https://doi.org/10.2337/db07-1614
Cited by
- Circulating miRNAs, Small but Promising Biomarkers for Autism Spectrum Disorder vol.12, pp.None, 2018, https://doi.org/10.3389/fnmol.2019.00253
- MikroRNAs als Biomarker für ein erhöhtes Typ-2-Diabetes-Risiko vol.13, pp.2, 2019, https://doi.org/10.1007/s15034-019-1468-8
- Extracellular Vesicle Encapsulated MicroRNAs in Patients with Type 2 Diabetes Are Affected by Metformin Treatment vol.8, pp.5, 2018, https://doi.org/10.3390/jcm8050617
- Biomarkers for type 2 diabetes vol.27, pp.suppl, 2018, https://doi.org/10.1016/j.molmet.2019.06.016
- Non-coding RNAs - A primer for the laboratory scientist vol.76, pp.4, 2019, https://doi.org/10.1080/09674845.2019.1675847
- Circulating microRNA changes in patients with impaired glucose regulation vol.9, pp.1, 2018, https://doi.org/10.1080/21623945.2020.1798632
- Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/3816056
- Effect of diabetes on exosomal miRNA profile in patients with obesity vol.8, pp.1, 2020, https://doi.org/10.1136/bmjdrc-2020-001403
- Nutritional genomics, inflammation and obesity vol.64, pp.3, 2018, https://doi.org/10.20945/2359-3997000000255
- Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets vol.21, pp.18, 2018, https://doi.org/10.3390/ijms21186750
- Modern Aspects of the Clinic, Diagnosis and Treatment of Prediabetes vol.10, pp.5, 2020, https://doi.org/10.20514/2226-6704-2020-10-5-327-339
- Inflexibility of the plasma miRNA response following a high-carbohydrate meal in overweight insulin-resistant women vol.15, pp.1, 2018, https://doi.org/10.1186/s12263-020-0660-8
- The circRNA-miRNA-mRNA regulatory network in systemic lupus erythematosus vol.40, pp.1, 2021, https://doi.org/10.1007/s10067-020-05212-2
- MicroRNAs, Parkinson’s Disease, and Diabetes Mellitus vol.22, pp.6, 2021, https://doi.org/10.3390/ijms22062953
- MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus vol.10, pp.6, 2021, https://doi.org/10.3390/biology10060534
- Non-Coding RNAs: Novel Players in Insulin Resistance and Related Diseases vol.22, pp.14, 2021, https://doi.org/10.3390/ijms22147716
- The β Cell in Diabetes: Integrating Biomarkers With Functional Measures vol.42, pp.5, 2021, https://doi.org/10.1210/endrev/bnab021
- MIRNAS as biomarkers for diagnosis of type 2 diabetes: A systematic review vol.13, pp.10, 2018, https://doi.org/10.1111/1753-0407.13166
- miRetrieve-an R package and web application for miRNA text mining vol.3, pp.4, 2018, https://doi.org/10.1093/nargab/lqab117
- Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer vol.178, pp.None, 2018, https://doi.org/10.1016/j.addr.2021.113918
- Metabolic Dysfunction Biomarkers as Predictors of Early Diabetes vol.11, pp.11, 2018, https://doi.org/10.3390/biom11111589
- Bisphenol A induces miR-708-5p through an ER stress-mediated mechanism altering neuronatin and neuropeptide Y expression in hypothalamic neuronal models vol.539, pp.None, 2018, https://doi.org/10.1016/j.mce.2021.111480