DOI QR코드

DOI QR Code

Whole genome MBD-seq and RRBS analyses reveal that hypermethylation of gastrointestinal hormone receptors is associated with gastric carcinogenesis

  • Kim, Hee-Jin (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Tae-Wook (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Haam, Keeok (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Mirang (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Seon-Kyu (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Seon-Young (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Sang-Il (Department of General Surgery, College of Medicine, Chungnam National University) ;
  • Song, Kyu-Sang (Department of Pathology, College of Medicine, Chungnam National University) ;
  • Jeong, Hyun-Yong (Internal Medicine, College of Medicine, Chungnam National University) ;
  • Kim, Yong Sung (Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2018.01.10
  • 심사 : 2018.08.09
  • 발행 : 2018.12.30

초록

DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand-receptor interaction pathway. Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of the Korea (NRF), KRIBB

참고문헌

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11-30 (2013). https://doi.org/10.3322/caac.21166
  2. Sakuramoto, S. et al. Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N. Engl. J. Med. 357, 1810-1820 (2007). https://doi.org/10.1056/NEJMoa072252
  3. Sasako, M. et al. D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N. Engl. J. Med. 359, 453-462 (2008). https://doi.org/10.1056/NEJMoa0707035
  4. Lauren, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol. Microbiol. Scand. 64, 31-49 (1965). https://doi.org/10.1111/apm.1965.64.1.31
  5. Correa, P. Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 52, 6735-6740 (1992).
  6. Niwa, T. et al. Inflammatory processes triggered by Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res. 70, 1430-1440 (2010). https://doi.org/10.1158/0008-5472.CAN-09-2755
  7. Issa, J. P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 4, 988-993 (2004). https://doi.org/10.1038/nrc1507
  8. Laird, P. W. Cancer epigenetics. Hum. Mol. Genet. 14 Spec No1, R65-R76 (2005). https://doi.org/10.1093/hmg/ddi113
  9. Baylin, S. B. & Ohm, J. E. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107-116 (2006). https://doi.org/10.1038/nrc1799
  10. Espina, V., Heiby, M., Pierobon, M. & Liotta, L. A. Laser capture microdissection technology. Expert. Rev. Mol. Diagn. 7, 647-657 (2007). https://doi.org/10.1586/14737159.7.5.647
  11. Fend, F. & Raffeld, M. Laser capture microdissection in pathology. J. Clin. Pathol. 53, 666-672 (2000). https://doi.org/10.1136/jcp.53.9.666
  12. Burgemeister, R. New aspects of laser microdissection in research and routine. J. Histochem. Cytochem. 53, 409-412 (2005). https://doi.org/10.1369/jhc.4B6421.2005
  13. Agar, N. S., Halliday, G. M., Barnetson, R. S. & Jones, A. M. A novel technique for the examination of skin biopsies by laser capture microdissection. J. Cutan. Pathol. 30, 265-270 (2003). https://doi.org/10.1046/j.0303-6987.2003.052.x
  14. Yazdi, A. S., Puchta, U., Flaig, M. J. & Sander, C. A. Laser-capture microdissection: applications in routine molecular dermatopathology. J. Cutan. Pathol. 31, 465-470 (2004). https://doi.org/10.1111/j.0303-6987.2004.00221.x
  15. Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat. Methods 7, 133-136 (2010). https://doi.org/10.1038/nmeth.1414
  16. Harris, E. Y., Ponts, N., Levchuk, A., Roch, K. L. & Lonardi, S. BRAT: bisulfite-treated reads analysis tool. Bioinformatics 26, (572-573 (2010). https://doi.org/10.1093/bioinformatics/btp706
  17. Clark, S. J., Harrison, J. & Frommer, M. CpNpG methylation in mammalian cells. Nat. Genet. 10, 20-27 (1995). https://doi.org/10.1038/ng0595-20
  18. Lee, J. et al. Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 96, 67-72 (2010). https://doi.org/10.1016/j.ygeno.2010.03.013
  19. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2009). https://doi.org/10.1038/nprot.2008.211
  20. Kim, M. et al. LRRC3B, encoding a leucine-rich repeat-containing protein, is a putative tumor suppressor gene in gastric cancer. Cancer Res. 68, 7147-7155 (2008). https://doi.org/10.1158/0008-5472.CAN-08-0667
  21. Kim, S. K. et al. A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol. Oncol. 8, 1653-1666 (2014). https://doi.org/10.1016/j.molonc.2014.06.016
  22. Kim, S. M. et al. Sixty-five gene-based risk score classifier predicts overall survival in hepatocellular carcinoma. Hepatology 55, 1443-1452 (2012). https://doi.org/10.1002/hep.24813
  23. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209 (2014). https://doi.org/10.1038/nature13480
  24. Irizarry, R. A. et al. The human colon cancer methylome shows similar hypoand hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41, 178-186 (2009). https://doi.org/10.1038/ng.298
  25. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967-971 (2012). https://doi.org/10.1126/science.1222077
  26. Hattori, N. & Ushijima, T. Epigenetic impact of infection on carcinogenesis: mechanisms and applications. Genome Med. 8, 10 (2016). https://doi.org/10.1186/s13073-016-0267-2
  27. Watson, S. A., Grabowska, A. M., El-Zaatari, M. & Takhar, A. Gastrin - active participant or bystander in gastric carcinogenesis? Nat. Rev. Cancer 6, 936-946 (2006). https://doi.org/10.1038/nrc2014
  28. Obrink, K. J. Histamine and gastric acid secretion. A review. Scand. J. Gastroenterol. Suppl. 180, 4-8 (1991).
  29. Chuang, C. N., Tanner, M., Chen, M. C., Davidson, S. & Soll, A. H. Gastrin induction of histamine release from primary cultures of canine oxyntic mucosal cells. Am. J. Physiol. 263(4 Pt 1), G460-G465 (1992).
  30. Lindstrom, E., Chen, D., Norlen, P., Andersson, K. & Hakanson, R. Control of gastric acid secretion:the gastrin-ECL cell-parietal cell axis. Com. Biochem Physiol. A Mol. Integr. Physiol. 128, 505-514 (2001).
  31. Waldum, H. L. et al. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. Pharmacol. Toxicol. 91, 359-362 (2002). https://doi.org/10.1034/j.1600-0773.2002.910613.x
  32. Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157-198 (1999). https://doi.org/10.1006/frne.1999.0183
  33. Jackson, K. et al. Epigenetic silencing of somatostatin in gastric cancer. Dig. Dis. Sci. 56, 125-130 (2011). https://doi.org/10.1007/s10620-010-1422-z
  34. Shi, X., Li, X., Chen, L. & Wang, C. Analysis of somatostatin receptors and somatostatin promoter methylation in human gastric cancer. Oncol. Lett. 6, 1794-1798 (2013). https://doi.org/10.3892/ol.2013.1614
  35. Kato, S., Aihara, E., Yoshii, K. & Takeuchi, K. Dual action of prostaglandin E2 on gastric acid secretion through different EP-receptor subtypes in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G64-G69 (2005). https://doi.org/10.1152/ajpgi.00397.2004
  36. Sheikh, S. P. Neuropeptide Y and peptide YY: major modulators of gastrointestinal blood flow and function. Am. J. Physiol. 261(5 Pt 1), G701-G715 (1991).
  37. Sugino, Y. et al. Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26, 7401-7413 (2007). https://doi.org/10.1038/sj.onc.1210550
  38. Tian, L. et al. Clinical significance of aberrant methylation of prostaglandin E receptor 2 (PTGER2) in nonsmall cell lung cancer: association with prognosis, PTGER2 expression, and epidermal growth factor receptor mutation. Cancer 113, 1396-1403 (2008). https://doi.org/10.1002/cncr.23694
  39. Cebola, I. et al. Epigenetics override pro-inflammatory PTGS transcriptomic signature towards selective hyperactivation of PGE2 in colorectal cancer. Clin. Epigenetics 7, 74 (2015). https://doi.org/10.1186/s13148-015-0110-4
  40. Negrini, M. et al. MINT31 methylation in gastric noninvasive neoplasia: potential role in the secondary prevention of gastric cancer. Eur. J. Cancer Prev. 21, 442-448 (2012).
  41. Kermani, M. & Eliassi, A. Gastric acid secretion induced by paraventricular nucleus microinjection of orexin A is mediated through activation of neuropeptide Yergic system. Neuroscience 226, 81-88 (2012). https://doi.org/10.1016/j.neuroscience.2012.08.052
  42. Lee, H. M. et al. Stimulatory actions of insulin-like growth factor-I and transforming growth factor-alpha on intestinal neurotensin and peptide YY. Endocrinology 140, 4065-4069 (1999). https://doi.org/10.1210/endo.140.9.6969
  43. Hokari, R. et al. Increased expression and cellular localization of lipocalintype prostaglandin D synthase in Helicobacter pylori-induced gastritis. J. Pathol. 219, 417-426 (2009). https://doi.org/10.1002/path.2615
  44. Kalmar, A. et al. DNA hypermethylation and decreased mRNA expression of MAL, PRIMA1, PTGDR and SFRP1 in colorectal adenoma and cancer. Bmc. Cancer 15, 736 (2015). https://doi.org/10.1186/s12885-015-1687-x
  45. Campbell, J. D. et al. The Case for a Pre-Cancer Genome Atlas (PCGA). Cancer Prev. Res (Phila.) 9, 119-124 (2016). https://doi.org/10.1158/1940-6207.CAPR-16-0024
  46. Takeshima, H., Wakabayashi, M., Hattori, N., Yamashita, S. & Ushijima, T. Identification of coexistence of DNA methylation and H3K27me3 specifically in cancer cells as a promising target for epigenetic therapy. Carcinogenesis 36, 192-201 (2015). https://doi.org/10.1093/carcin/bgu238
  47. Liu, X. S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233-247e17 (2016). https://doi.org/10.1016/j.cell.2016.08.056

피인용 문헌

  1. Premalignant lesions and gastric cancer: Current understanding vol.11, pp.9, 2018, https://doi.org/10.4251/wjgo.v11.i9.665
  2. ONECUT2 upregulation is associated with CpG hypomethylation at promoter‐proximal DNA in gastric cancer and triggers ACSL5 vol.146, pp.12, 2018, https://doi.org/10.1002/ijc.32946
  3. Genome-wide methylation sequencing identifies progression-related epigenetic drivers in myelodysplastic syndromes vol.11, pp.11, 2018, https://doi.org/10.1038/s41419-020-03213-2
  4. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.663771