DOI QR코드

DOI QR Code

A Study on the Relationship between the Brain and the Pelvis

  • Jung, Jae Hun (The Member of the Korean Academy of Medical Gi-Gong) ;
  • Pi, Chien Mei (The Member of the Korean Academy of Medical Gi-Gong) ;
  • Ahn, Hun Mo (The Member of the Korean Academy of Medical Gi-Gong)
  • Received : 2018.11.10
  • Accepted : 2018.11.25
  • Published : 2018.12.31

Abstract

Objective : The purpose of this study is to examine the relationship between the brain and the pelvis. Methods : The relationship between the pelvis and the brain was searched in PubMed, and these searching studies were reviewed. Conclusions : 1. Urinary disorder is influenced by brain. 2. Brain is influenced by luteinizing hormone. 3. Pelvic floor muscles are influenced by brain. 4. Urological Chronic Pelvic Pain Syndrome(UCPPS) is influenced by brain. 5. Brain is influenced by the low intensity laser acupuncture stimulating thirteen ghost acupoints(includes CV1).

Keywords

References

  1. Zijlstra A, Mancini M, Chiari L, Zijlstra W. Biofeedback for training balance and mobility tasks in older populations: a systematic review. Journal of neuroengineering and rehabilitation. 2010;7(1):58. https://doi.org/10.1186/1743-0003-7-58
  2. Horlings CG, Van Engelen BG, Allum JH, Bloem BR. A weak balance: the contribution of muscle weakness to postural instability and falls. Nature Reviews Neurology. 2008;4(9):504.
  3. Moreland JD, Richardson JA, Goldsmith CH, Clase CM. Muscle weakness and falls in older adults: a systematic review and meta‐analysis. Journal of the American Geriatrics Society. 2004;52(7):1121-9. https://doi.org/10.1111/j.1532-5415.2004.52310.x
  4. Shaffer SW, Harrison AL. Aging of the somatosensory system: a translational perspective. Physical therapy. 2007;87(2):193-207. https://doi.org/10.2522/ptj.20060083
  5. Bugnariu N, Fung J. Aging and selective sensorimotor strategies in the regulation of upright balance. Journal of neuroengineering and rehabilitation. 2007;4(1):19. https://doi.org/10.1186/1743-0003-4-19
  6. Hughes S, Leary A, Zweizig S, Cain J. Surgery in elderly people: preoperative, operative and postoperative care to assist healing. Best Practice & Research Clinical Obstetrics & Gynaecology. 2013;27(5):753-65. https://doi.org/10.1016/j.bpobgyn.2013.02.006
  7. Cook DJ, Rooke GA. Priorities in perioperative geriatrics. Anesthesia & Analgesia. 2003;96(6):1823-36. https://doi.org/10.1213/01.ANE.0000063822.02757.41
  8. Robinson TN, Wu DS, Pointer LF, Dunn CL, Moss M. Preoperative cognitive dysfunction is related to adverse postoperative outcomes in the elderly. Journal of the American College of Surgeons. 2012;215(1):12-7. https://doi.org/10.1016/j.jamcollsurg.2012.02.007
  9. Trowbridge ER, Kim D, Barletta K, Fitz V, Larkin S, Hullfish KL. Prevalence of positive screening test for cognitive impairment among elderly urogynecologic patients. American journal of obstetrics and gynecology. 2016;215(5):663. e1-. e6. https://doi.org/10.1016/j.ajog.2016.06.012
  10. Williams G, Morris ME, Schache A, McCrory PR. Incidence of gait abnormalities after traumatic brain injury. Archives of physical medicine and rehabilitation. 2009;90(4):587-93. https://doi.org/10.1016/j.apmr.2008.10.013
  11. Lee LW, Zavarei K, Evans J, Lelas JJ, Riley PO, Kerrigan DC. Reduced hip extension in the elderly: dynamic or postural? Archives of physical medicine and rehabilitation. 2005;86(9):1851-4. https://doi.org/10.1016/j.apmr.2005.03.008
  12. Kim H, Park H-J, Han S-M, Hahm D-H, Lee H-J, Kim K-S, et al. The effects of acupuncture stimulation at PC6 (Neiguan) on chronic mild stress-induced biochemical and behavioral responses. Neuroscience letters. 2009;460(1):56-60. https://doi.org/10.1016/j.neulet.2009.05.008
  13. Samuels N, Gropp C, Singer SR, Oberbaum M. Acupuncture for psychiatric illness: a literature review. Behavioral Medicine. 2008;34(2):55-64. https://doi.org/10.3200/BMED.34.2.55-64
  14. Courbasson CM, de Sorkin AA, Dullerud B, Van Wyk L. Acupuncture treatment for women with concurrent substance use and anxiety/depression: an effective alternative therapy? Family & community health. 2007;30(2):112-20. https://doi.org/10.1097/01.FCH.0000264408.36013.03
  15. Gallagher S, Allen J, Hitt S, Schnyer R, Manber R. Six-month depression relapse rates among women treated with acupuncture. Complementary therapies in medicine. 2001;9(4):216-8. https://doi.org/10.1054/ctim.2001.0470
  16. Pilkington K. Acupuncture therapy for psychiatric illness. International review of neurobiology. 111: Elsevier; 2013. p. 197-216. https://doi.org/10.1016/B978-0-12-411545-3.00010-9
  17. Zeng B-Y, Salvage S, Jenner P. Effect and mechanism of acupuncture on Alzheimer's disease. International review of neurobiology. 111: Elsevier; 2013. p. 181-95. https://doi.org/10.1016/B978-0-12-411545-3.00009-2
  18. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Human brain mapping. 2005;24(3):193-205. https://doi.org/10.1002/hbm.20081
  19. Napadow V, Dhond R, Purdon P, Kettner N, Makris N, Kwong K, et al., editors. Correlating acupuncture FMRI in the human brainstem with heart rate variability. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference; 2006: IEEE.
  20. Dhond RP, Yeh C, Park K, Kettner N, Napadow V. Acupuncture modulates resting state connectivity in default and sensorimotor brain networks. Pain. 2008;136(3):407-18. https://doi.org/10.1016/j.pain.2008.01.011
  21. Harvie C, Weissbart SJ, Kadam‐Halani P, Rao H, Arya LA. Brain Activation during the Voiding phase of Micturition in Healthy Adults: A Meta‐analysis of Neuroimaging Studies. Clinical Anatomy. 2018.
  22. Osman NI, Chapple CR. Contemporary concepts in the aetiopathogenesis of detrusor underactivity. Nature Reviews Urology. 2014;11(11):639. https://doi.org/10.1038/nrurol.2014.286
  23. Abarbanel J, Marcus E-L. Impaired detrusor contractility in community-dwelling elderly presenting with lower urinary tract symptoms. Urology. 2007;69(3):436-40. https://doi.org/10.1016/j.urology.2006.11.019
  24. Resnick NM, Brandeis GH, Baumann MM, DuBeau CE, Yalla SV. Misdiagnosis of urinary incontinence in nursing home women: prevalence and a proposed solution. Neurourology and Urodynamics: Official Journal of the International Continence Society. 1996;15(6):599-618. https://doi.org/10.1002/(SICI)1520-6777(1996)15:6<599::AID-NAU2>3.0.CO;2-A
  25. Osman NI, Chapple CR. Fowler's syndrome-a cause of unexplained urinary retention in young women? Nature Reviews Urology. 2014;11(2):87. https://doi.org/10.1038/nrurol.2013.277
  26. Holstege G, Griffiths D, De Wall H, Dalm E. Anatomical and physiological observations on suprapinal control of bladder and urethral sphincter muscles in the cat. Journal of Comparative Neurology. 1986;250(4):449-61. https://doi.org/10.1002/cne.902500404
  27. Arya NG, Weissbart SJ, Xu S, Rao H. Brain activation in response to bladder filling in healthy adults: An activation likelihood estimation meta‐analysis of neuroimaging studies. Neurourology and urodynamics. 2017;36(4):960-5. https://doi.org/10.1002/nau.23058
  28. Griffiths D, Fowler C. The micturition switch and its forebrain influences. Acta physiologica. 2013;207(1):93-109. https://doi.org/10.1111/apha.12019
  29. Arya NG, Weissbart SJ. Central control of micturition in women: Brain-bladder pathways in continence and urgency urinary incontinence. Clinical anatomy (New York, NY). 2017;30(3):373-84. https://doi.org/10.1002/ca.22840
  30. Harvie C, Weissbart SJ, Kadam-Halani P, Rao H, Arya LA. Brain activation during the voiding phase of micturition in healthy adults: A meta-analysis of neuroimaging studies. Clinical anatomy (New York, NY). 2018.
  31. Griffiths D, Tadic SD, Schaefer W, Resnick NM. Cerebral control of the bladder in normal and urge-incontinent women. NeuroImage. 2007;37(1):1-7. https://doi.org/10.1016/j.neuroimage.2007.04.061
  32. Komesu YM, Ketai LH, Mayer AR, Teshiba TM, Rogers RG. Functional MRI of the Brain in Women with Overactive Bladder: Brain Activation During Urinary Urgency. Female pelvic medicine & reconstructive surgery. 2011;17(1):50-4. https://doi.org/10.1097/SPV.0b013e3182065507
  33. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nature reviews Neuroscience. 2002;3(8):655-66. https://doi.org/10.1038/nrn894
  34. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends in cognitive sciences. 2000;4(6):215-22. https://doi.org/10.1016/S1364-6613(00)01483-2
  35. Blok BF, Willemsen AT, Holstege G. A PET study on brain control of micturition in humans. Brain : a journal of neurology. 1997;120 ( Pt 1):111-21. https://doi.org/10.1093/brain/120.1.111
  36. Blok BF, Sturms LM, Holstege G. Brain activation during micturition in women. Brain : a journal of neurology. 1998;121 ( Pt 11):2033-42. https://doi.org/10.1093/brain/121.11.2033
  37. Michels L, Blok BF, Gregorini F, Kurz M, Schurch B, Kessler TM, et al. Supraspinal Control of Urine Storage and Micturition in Men--An fMRI Study. Cerebral cortex (New York, NY : 1991). 2015;25(10):3369-80. https://doi.org/10.1093/cercor/bhu140
  38. Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. Experimental brain research. 2009;192(3):489-97. https://doi.org/10.1007/s00221-008-1642-z
  39. Arya NG, Weissbart SJ, Xu S, Rao H. Brain activation in response to bladder filling in healthy adults: An activation likelihood estimation meta-analysis of neuroimaging studies. Neurourol Urodyn. 2017;36(4):960-5. https://doi.org/10.1002/nau.23058
  40. Sakakibara R, Uchida Y, Uchiyama T, Yamanishi T, Hattori T. Reduced cerebellar vermis activation during urinary storage and micturition in multiple system atrophy: 99mTc-labelled ECD SPECT study. European journal of neurology. 2004;11(10):705-8. https://doi.org/10.1111/j.1468-1331.2004.00872.x
  41. Clarkson BD, Karim HT, Griffiths DJ, Resnick NM. Functional connectivity of the brain in older women with urgency urinary incontinence. Neurourol Urodyn. 2018;37(8):2763-75. https://doi.org/10.1002/nau.23766
  42. Griffiths D, Clarkson B, Tadic SD, Resnick NM. Brain Mechanisms Underlying Urge Incontinence and its Response to Pelvic Floor Muscle Training. J Urol. 2015;194(3):708-15. https://doi.org/10.1016/j.juro.2015.03.102
  43. Reshef E, Lei ZM, Rao CV, Pridham DD, Chegini N, Luborsky JL. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. The Journal of clinical endocrinology and metabolism. 1990;70(2):421-30. https://doi.org/10.1210/jcem-70-2-421
  44. Lei ZM, Rao CV, Kornyei JL, Licht P, Hiatt ES. Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology. 1993;132(5):2262-70. https://doi.org/10.1210/endo.132.5.8477671
  45. AA AL-H, Lei ZM, Rao CV. Neurons from fetal rat brains contain functional luteinizing hormone/chorionic gonadotropin receptors. Biology of reproduction. 1997;56(5):1071-6. https://doi.org/10.1095/biolreprod56.5.1071
  46. Tao YX, Lei ZM, Hofmann GE, Rao CV. Human intermediate trophoblasts express chorionic gonadotropin/luteinizing hormone receptor gene. Biology of reproduction. 1995;53(4):899-904. https://doi.org/10.1095/biolreprod53.4.899
  47. Gawronska B, Paukku T, Huhtaniemi I, Wasowicz G, Ziecik AJ. Oestrogen-dependent expression of LH/hCG receptors in pig Fallopian tube and their role in relaxation of the oviduct. Journal of reproduction and fertility. 1999;115(2):293-301. https://doi.org/10.1530/jrf.0.1150293
  48. Wasowicz G, Derecka K, Stepien A, Pelliniemi L, Doboszynska T, Gawronska B, et al. Evidence for the presence of luteinizing hormone-chorionic gonadotrophin receptors in the pig umbilical cord. Journal of reproduction and fertility. 1999;117(1):1-9. https://doi.org/10.1530/jrf.0.1170001
  49. Bukovsky A, Chen TT, Wimalasena J, Caudle MR. Cellular localization of luteinizing hormone receptor immunoreactivity in the ovaries of immature, gonadotropin-primed and normal cycling rats. Biology of reproduction. 1993;48(6):1367-82. https://doi.org/10.1095/biolreprod48.6.1367
  50. Zhang YM, Rao Ch V, Lei ZM. Macrophages in human reproductive tissues contain luteinizing hormone/chorionic gonadotropin receptors. American journal of reproductive immunology (New York, NY : 1989). 2003;49(2):93-100. https://doi.org/10.1034/j.1600-0897.2003.00013.x
  51. Gawronska B, Leuschner C, Enright FM, Hansel W. Effects of a lytic peptide conjugated to beta HCG on ovarian cancer: studies in vitro and in vivo. Gynecologic oncology. 2002;85(1):45-52. https://doi.org/10.1006/gyno.2001.6558
  52. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. The Journal of pharmacology and experimental therapeutics. 2003;304(1):1-7. https://doi.org/10.1124/jpet.102.035048
  53. Nakamura Y. Regulating factors for microglial activation. Biological & pharmaceutical bulletin. 2002;25(8):945-53. https://doi.org/10.1248/bpb.25.945
  54. Hershkovitz R, Erez O, Sheiner E, Landau D, Mankuta D, Mazor M. Elevated maternal mid-trimester chorionic gonadotropin > or =4 MoM is associated with fetal cerebral blood flow redistribution. Acta obstetricia et gynecologica Scandinavica. 2003;82(1):22-7. https://doi.org/10.1080/j.1600-0412.2003.820104.x
  55. Fillit H. Estrogens in the pathogenesis and treatment of Alzheimer's disease in postmenopausal women. Annals of the New York Academy of Sciences. 1994;743:233-8; discussion 8-9.
  56. Green PS, Simpkins JW. Estrogens and estrogen-like non-feminizing compounds. Their role in the prevention and treatment of Alzheimer's disease. Annals of the New York Academy of Sciences. 2000;924:93-8. https://doi.org/10.1111/j.1749-6632.2000.tb05566.x
  57. Monk D, Brodaty H. Use of estrogens for the prevention and treatment of Alzheimer's disease. Dementia and geriatric cognitive disorders. 2000;11(1):1-10. https://doi.org/10.1159/000017206
  58. Schafer A, Pauli G, Friedmann W, Dudenhausen JW. Human choriogonadotropin (hCG) and placental lactogen (hPL) inhibit interleukin-2 (IL-2) and increase interleukin-$1{\beta}$ (IL-$1{\beta}$),-6 (IL-6) and tumor necrosis factor ($TNF-{\alpha}$) expression in monocyte cell cultures. Journal of Perinatal Medicine-Official Journal of the WAPM. 1992;20(3):233-40. https://doi.org/10.1515/jpme.1992.20.3.233
  59. Reinisch N, Sitte B, Kahler C, Wiedermann C. Human chorionic gonadotrophin: a chemoattractant for human blood monocytes, neutrophils and lymphocytes. Journal of endocrinology. 1994;142(1):167-70. https://doi.org/10.1677/joe.0.1420167
  60. Shirshev S, Lyalina O, Zamorina S. Role of potassium ions in monocyte-regulating effects of chorionic gonadotropin. Bulletin of experimental biology and medicine. 2000;130(5):1099. https://doi.org/10.1007/BF02688190
  61. Kosaka K, Fujiwara H, Tatsumi K, Yoshioka S, Sato Y, Egawa H, et al. Human chorionic gonadotropin (HCG) activates monocytes to produce interleukin-8 via a different pathway from luteinizing hormone/HCG receptor system. The Journal of Clinical Endocrinology & Metabolism. 2002;87(11):5199-208. https://doi.org/10.1210/jc.2002-020341
  62. Bukovsky A, Indrapichate K, Fujiwara H, Cekanova M, Ayala ME, Dominguez R, et al. Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer's disease. Reproductive Biology and Endocrinology. 2003;1(1):46. https://doi.org/10.1186/1477-7827-1-46
  63. Castelan F, Lopez‐Garcia K, Moreno‐Perez S, Zempoalteca R, Corona‐Quintanilla DL, Romero‐Ortega MI, et al. Multiparity affects conduction properties of pelvic floor nerves in rabbits. Brain and behavior. 2018;8(10):e01105. https://doi.org/10.1002/brb3.1105
  64. de Aguiar Cavalcanti G, Manzano GM, Nunes KF, Giuliano LMP, de Menezes TA, Bruschini H. Electrophysiological evaluation of the pudendal nerve and urethral innervation in female stress urinary incontinence. International urogynecology journal. 2013;24(5):801-7. https://doi.org/10.1007/s00192-012-1931-8
  65. Elser DM. Stress urinary incontinence and overactive bladder syndrome: current options and new targets for management. Postgraduate medicine. 2012;124(3):42-9. https://doi.org/10.3810/pgm.2012.05.2547
  66. Clemens JQ, Mullins C, Kusek JW, Kirkali Z, Mayer EA, Rodriguez LV, et al. The MAPP research network: a novel study of urologic chronic pelvic pain syndromes. BMC urology. 2014;14(1):57. https://doi.org/10.1186/1471-2490-14-57
  67. Allsop SA, Erstad DJ, Brook K, Bhai SF, Cohen JM, Dimitrakoff JD. The DABBEC phenotyping system: towards a mechanistic understanding of CP/CPPS. Nature reviews Urology. 2011;8(2):107. https://doi.org/10.1038/nrurol.2010.227
  68. Hanno P, Andersson KE, Birder L, Elneil S, Kanai A, Pontari M. Chronic pelvic pain syndrome/bladder pain syndrome: Taking stock, looking ahead: ICI‐RS 2011. Neurourology and urodynamics. 2012;31(3):375-83. https://doi.org/10.1002/nau.22202
  69. Nicke JC. A new approach to understanding and managing chronic prostatitis and interstitial cystitis. Reviews in urology. 2010;12(1):67.
  70. Shoskes D, Nickel J, Rackley R, Pontari M. Clinical phenotyping in chronic prostatitis/chronic pelvic pain syndrome and interstitial cystitis: a management strategy for urologic chronic pelvic pain syndromes. Prostate cancer and prostatic diseases. 2009;12(2):177. https://doi.org/10.1038/pcan.2008.42
  71. Lai HH, North CS, Andriole GL, Sayuk GS, Hong BA. Polysymptomatic, polysyndromic presentation of patients with urological chronic pelvic pain syndrome. The Journal of urology. 2012;187(6):2106-12. https://doi.org/10.1016/j.juro.2012.01.081
  72. Dimitrakov J, Guthrie D. Genetics and phenotyping of urological chronic pelvic pain syndrome. The Journal of urology. 2009;181(4):1550-7. https://doi.org/10.1016/j.juro.2008.11.119
  73. Farmer MA, Chanda ML, Parks EL, Baliki MN, Apkarian AV, Schaeffer AJ. Brain functional and anatomical changes in chronic prostatitis/chronic pelvic pain syndrome. The Journal of urology. 2011;186(1):117-24. https://doi.org/10.1016/j.juro.2011.03.027
  74. Chen JY-W, Blankstein U, Diamant NE, Davis KD. White matter abnormalities in irritable bowel syndrome and relation to individual factors. Brain research. 2011;1392:121-31. https://doi.org/10.1016/j.brainres.2011.03.069
  75. Ellingson BM, Mayer E, Harris RJ, Ashe-McNally C, Naliboff BD, Labus JS, et al. Diffusion tensor imaging detects microstructural reorganization in the brain associated with chronic irritable bowel syndrome. PAIN(R). 2013;154(9):1528-41. https://doi.org/10.1016/j.pain.2013.04.010
  76. Grachev ID, Fredrickson BE, Apkarian AV. Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain. 2000;89(1):7-18. https://doi.org/10.1016/S0304-3959(00)00340-7
  77. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, et al. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. Journal of neuroscience. 2004;24(46):10410-5. https://doi.org/10.1523/JNEUROSCI.2541-04.2004
  78. Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, et al. Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. Journal of Neuroscience. 2006;26(47):12165-73. https://doi.org/10.1523/JNEUROSCI.3576-06.2006
  79. Frokjær JB, Olesen SS, Gram M, Yavarian Y, Bouwense SA, Wilder-Smith OH, et al. Altered brain microstructure assessed by diffusion tensor imaging in patients with chronic pancreatitis. Gut. 2011;60(11):1554-62. https://doi.org/10.1136/gut.2010.236620
  80. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60(4):570-81. https://doi.org/10.1016/j.neuron.2008.08.022
  81. Landis JR, Williams DA, Lucia MS, Clauw DJ, Naliboff BD, Robinson NA, et al. The MAPP research network: design, patient characterization and operations. BMC urology. 2014;14(1):58. https://doi.org/10.1186/1471-2490-14-58
  82. Woodworth D, Mayer E, Leu K, Ashe-McNalley C, Naliboff BD, Labus JS, et al. Unique Microstructural Changes in the Brain Associated with Urological Chronic Pelvic Pain Syndrome (UCPPS) Revealed by Diffusion Tensor MRI, Super-Resolution Track Density Imaging, and Statistical Parameter Mapping: A MAPP Network Neuroimaging Study. PloS one. 2015;10(10):e0140250. https://doi.org/10.1371/journal.pone.0140250
  83. Harper DE, Ichesco E, Schrepf A, Halvorson M, Puiu T, Clauw DJ, et al. Relationships between brain metabolite levels, functional connectivity, and negative mood in urologic chronic pelvic pain syndrome patients compared to controls: A MAPP research network study. NeuroImage Clinical. 2018;17:570-8. https://doi.org/10.1016/j.nicl.2017.11.014
  84. Kilpatrick LA, Kutch JJ, Tillisch K, Naliboff BD, Labus JS, Jiang Z, et al. Alterations in resting state oscillations and connectivity in sensory and motor networks in women with interstitial cystitis/painful bladder syndrome. J Urol. 2014;192(3):947-55. https://doi.org/10.1016/j.juro.2014.03.093
  85. Kleinhans NM, Yang CC, Strachan ED, Buchwald DS, Maravilla KR. Alterations in Connectivity on Functional Magnetic Resonance Imaging with Provocation of Lower Urinary Tract Symptoms: A MAPP Research Network Feasibility Study of Urological Chronic Pelvic Pain Syndromes. J Urol. 2016;195(3):639-45. https://doi.org/10.1016/j.juro.2015.09.092
  86. Kutch JJ, Labus JS, Harris RE, Martucci KT, Farmer MA, Fenske S, et al. Resting-state functional connectivity predicts longitudinal pain symptom change in urologic chronic pelvic pain syndrome: a MAPP network study. Pain. 2017;158(6):1069-82. https://doi.org/10.1097/j.pain.0000000000000886
  87. Kutch JJ, Yani MS, Asavasopon S, Kirages DJ, Rana M, Cosand L, et al. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP: Research Network Neuroimaging Study. NeuroImage Clinical. 2015;8:493-502. https://doi.org/10.1016/j.nicl.2015.05.013
  88. Martucci KT, Shirer WR, Bagarinao E, Johnson KA, Farmer MA, Labus JS, et al. The posterior medial cortex in urologic chronic pelvic pain syndrome: detachment from default mode network-a resting-state study from the MAPP Research Network. Pain. 2015;156(9):1755-64. https://doi.org/10.1097/j.pain.0000000000000238
  89. As-Sanie S, Kim J, Schmidt-Wilcke T, Sundgren PC, Clauw DJ, Napadow V, et al. Functional Connectivity is Associated With Altered Brain Chemistry in Women With Endometriosis-Associated Chronic Pelvic Pain. The journal of pain : official journal of the American Pain Society. 2016;17(1):1-13. https://doi.org/10.1016/j.jpain.2015.09.008
  90. Clauw DJ, Schmidt M, Radulovic D, Singer A, Katz P, Bresette J. The relationship between fibromyalgia and interstitial cystitis. Journal of psychiatric research. 1997;31(1):125-31. https://doi.org/10.1016/S0022-3956(96)00051-9
  91. Grinberg K, Granot M, Lowenstein L, Abramov L, Weissman-Fogel I. A common pronociceptive pain modulation profile typifying subgroups of chronic pelvic pain syndromes is interrelated with enhanced clinical pain. Pain. 2017;158(6):1021-9. https://doi.org/10.1097/j.pain.0000000000000869
  92. Iacovides S, Avidon I, Baker FC. Women with dysmenorrhoea are hypersensitive to experimentally induced forearm ischaemia during painful menstruation and during the pain-free follicular phase. European journal of pain (London, England). 2015;19(6):797-804. https://doi.org/10.1002/ejp.604
  93. Ness TJ, Powell-Boone T, Cannon R, Lloyd LK, Fillingim RB. Psychophysical evidence of hypersensitivity in subjects with interstitial cystitis. The Journal of urology. 2005;173(6):1983-7. https://doi.org/10.1097/01.ju.0000158452.15915.e2
  94. Ness TJ, Lloyd LK, Fillingim RB. An endogenous pain control system is altered in subjects with interstitial cystitis. The Journal of urology. 2014;191(2):364-70. https://doi.org/10.1016/j.juro.2013.08.024
  95. Powell-Boone T, Ness TJ, Cannon R, Lloyd LK, Weigent DA, Fillingim RB. Menstrual cycle affects bladder pain sensation in subjects with interstitial cystitis. The Journal of urology. 2005;174(5):1832-6. https://doi.org/10.1097/01.ju.0000176747.40242.3d
  96. Slater H, Paananen M, Smith AJ, O'Sullivan P, Briggs AM, Hickey M, et al. Heightened cold pain and pressure pain sensitivity in young female adults with moderate-to-severe menstrual pain. Pain. 2015;156(12):2468-78. https://doi.org/10.1097/j.pain.0000000000000317
  97. Stratton P, Khachikyan I, Sinaii N, Ortiz R, Shah J. Association of chronic pelvic pain and endometriosis with signs of sensitization and myofascial pain. Obstetrics and gynecology. 2015;125(3):719-28. https://doi.org/10.1097/AOG.0000000000000663
  98. Aguila MR, Rebbeck T, Leaver AM, Lagopoulos J, Brennan PC, Hubscher M, et al. The Association Between Clinical Characteristics of Migraine and Brain GABA Levels: An Exploratory Study. The journal of pain : official journal of the American Pain Society. 2016;17(10):1058-67. https://doi.org/10.1016/j.jpain.2016.06.008
  99. Cao B, Stanley JA, Selvaraj S, Mwangi B, Passos IC, Zunta-Soares GB, et al. Evidence of altered membrane phospholipid metabolism in the anterior cingulate cortex and striatum of patients with bipolar disorder I: A multi-voxel (1)H MRS study. Journal of psychiatric research. 2016;81:48-55. https://doi.org/10.1016/j.jpsychires.2016.06.006
  100. Chang L, Munsaka SM, Kraft-Terry S, Ernst T. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2013;8(3):576-93. https://doi.org/10.1007/s11481-013-9460-x
  101. Fayed N, Garcia-Campayo J, Magallon R, Andres-Bergareche H, Luciano JV, Andres E, et al. Localized 1H-NMR spectroscopy in patients with fibromyalgia: a controlled study of changes in cerebral glutamate/glutamine, inositol, choline, and N-acetylaspartate. Arthritis research & therapy. 2010;12(4):R134. https://doi.org/10.1186/ar3072
  102. Feraco P, Bacci A, Pedrabissi F, Passamonti L, Zampogna G, Pedrabissi F, et al. Metabolic abnormalities in pain-processing regions of patients with fibromyalgia: a 3T MR spectroscopy study. AJNR American journal of neuroradiology. 2011;32(9):1585-90. https://doi.org/10.3174/ajnr.A2550
  103. Foerster BR, Petrou M, Edden RA, Sundgren PC, Schmidt-Wilcke T, Lowe SE, et al. Reduced insular gamma-aminobutyric acid in fibromyalgia. Arthritis and rheumatism. 2012;64(2):579-83. https://doi.org/10.1002/art.33339
  104. Harris RE, Clauw DJ. Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neuroscience letters. 2012;520(2):192-6. https://doi.org/10.1016/j.neulet.2012.03.042
  105. Harris RE, Napadow V, Huggins JP, Pauer L, Kim J, Hampson J, et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 2013;119(6):1453-64. https://doi.org/10.1097/ALN.0000000000000017
  106. Harris RE, Sundgren PC, Craig AD, Kirshenbaum E, Sen A, Napadow V, et al. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis and rheumatism. 2009;60(10):3146-52. https://doi.org/10.1002/art.24849
  107. Harris RE, Sundgren PC, Pang Y, Hsu M, Petrou M, Kim SH, et al. Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis and rheumatism. 2008;58(3):903-7. https://doi.org/10.1002/art.23223
  108. Ito T, Tanaka-Mizuno S, Iwashita N, Tooyama I, Shiino A, Miura K, et al. Proton magnetic resonance spectroscopy assessment of metabolite status of the anterior cingulate cortex in chronic pain patients and healthy controls. Journal of pain research. 2017;10:287-93. https://doi.org/10.2147/JPR.S123403
  109. Petrou M, Harris RE, Foerster BR, McLean SA, Sen A, Clauw DJ, et al. Proton MR spectroscopy in the evaluation of cerebral metabolism in patients with fibromyalgia: comparison with healthy controls and correlation with symptom severity. AJNR American journal of neuroradiology. 2008;29(5):913-8. https://doi.org/10.3174/ajnr.A0959
  110. Petrou M, Pop-Busui R, Foerster BR, Edden RA, Callaghan BC, Harte SE, et al. Altered excitation-inhibition balance in the brain of patients with diabetic neuropathy. Academic radiology. 2012;19(5):607-12. https://doi.org/10.1016/j.acra.2012.02.004
  111. Reckziegel D, Raschke F, Cottam WJ, Auer DP. Cingulate GABA levels inversely correlate with the intensity of ongoing chronic knee osteoarthritis pain. Molecular pain. 2016;12.
  112. Valdes M, Collado A, Bargallo N, Vazquez M, Rami L, Gomez E, et al. Increased glutamate/glutamine compounds in the brains of patients with fibromyalgia: a magnetic resonance spectroscopy study. Arthritis and rheumatism. 2010;62(6):1829-36. https://doi.org/10.1002/art.27430
  113. Widerstrom-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, et al. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain. 2013;154(2):204-12. https://doi.org/10.1016/j.pain.2012.07.022
  114. Zhao X, Xu M, Jorgenson K, Kong J. Neurochemical changes in patients with chronic low back pain detected by proton magnetic resonance spectroscopy: A systematic review. NeuroImage Clinical. 2017;13:33-8. https://doi.org/10.1016/j.nicl.2016.11.006
  115. Bagarinao E, Johnson KA, Martucci KT, Ichesco E, Farmer MA, Labus J, et al. Preliminary structural MRI based brain classification of chronic pelvic pain: A MAPP network study. Pain. 2014;155(12):2502-9. https://doi.org/10.1016/j.pain.2014.09.002
  116. Farmer MA, Huang L, Martucci K, Yang CC, Maravilla KR, Harris RE, et al. Brain White Matter Abnormalities in Female Interstitial Cystitis/Bladder Pain Syndrome: A MAPP Network Neuroimaging Study. The Journal of urology. 2015;194(1):118-26. https://doi.org/10.1016/j.juro.2015.02.082
  117. Mayer EA, Gupta A, Kilpatrick LA, Hong JY. Imaging brain mechanisms in chronic visceral pain. Pain. 2015;156 Suppl 1:S50-63. https://doi.org/10.1097/j.pain.0000000000000106
  118. Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nature reviews Neuroscience. 2016;18(1):20-30. https://doi.org/10.1038/nrn.2016.162
  119. Maixner W, Fillingim RB, Williams DA, Smith SB, Slade GD. Overlapping Chronic Pain Conditions: Implications for Diagnosis and Classification. The journal of pain : official journal of the American Pain Society. 2016;17(9 Suppl):T93-t107. https://doi.org/10.1016/j.jpain.2016.06.002
  120. Schmidt-Wilcke T. Neuroimaging of chronic pain. Best practice & research Clinical rheumatology. 2015;29(1):29-41. https://doi.org/10.1016/j.berh.2015.04.030
  121. Walitt B, Ceko M, Gracely JL, Gracely RH. Neuroimaging of Central Sensitivity Syndromes: Key Insights from the Scientific Literature. Current rheumatology reviews. 2016;12(1):55-87. https://doi.org/10.2174/1573397112666151231111104
  122. Huang L, Kutch JJ, Ellingson BM, Martucci KT, Harris RE, Clauw DJ, et al. Brain white matter changes associated with urological chronic pelvic pain syndrome: multisite neuroimaging from a MAPP case-control study. Pain. 2016;157(12):2782-91. https://doi.org/10.1097/j.pain.0000000000000703
  123. Kairys AE, Schmidt-Wilcke T, Puiu T, Ichesco E, Labus JS, Martucci K, et al. Increased brain gray matter in the primary somatosensory cortex is associated with increased pain and mood disturbance in patients with interstitial cystitis/painful bladder syndrome. The Journal of urology. 2015;193(1):131-7. https://doi.org/10.1016/j.juro.2014.08.042
  124. Deutsch G, Deshpande H, Frolich MA, Lai HH, Ness TJ. Bladder Distension Increases Blood Flow in Pain Related Brain Structures in Subjects with Interstitial Cystitis. The Journal of urology. 2016;196(3):902-10. https://doi.org/10.1016/j.juro.2016.03.135
  125. Siedentopf CM, Golaszewski SM, Mottaghy FM, Ruff CC, Felber S, Schlager A. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neuroscience letters. 2002;327(1):53-6. https://doi.org/10.1016/S0304-3940(02)00383-X
  126. Siedentopf CM, Koppelstaetter F, Haala IA, Haid V, Rhomberg P, Ischebeck A, et al. Laser acupuncture induced specific cerebral cortical and subcortical activations in humans. Lasers in medical science. 2005;20(2):68-73. https://doi.org/10.1007/s10103-005-0340-3
  127. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Human brain mapping. 2005;24(3):193-205. https://doi.org/10.1002/hbm.20081
  128. Biella G, Sotgiu ML, Pellegata G, Paulesu E, Castiglioni I, Fazio F. Acupuncture produces central activations in pain regions. NeuroImage. 2001;14(1 Pt 1):60-6. https://doi.org/10.1006/nimg.2001.0798
  129. Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Human brain mapping. 2000;9(1):13-25. https://doi.org/10.1002/(SICI)1097-0193(2000)9:1<13::AID-HBM2>3.0.CO;2-F
  130. Lv J, Shi C, Deng Y, Lou W, Hu J, Shi L, et al. The brain effects of laser acupuncture at thirteen ghost acupoints in healthy individuals: A resting-state functional MRI investigation. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society. 2016;54:48-54. https://doi.org/10.1016/j.compmedimag.2016.08.003
  131. Zhang S, Li CS. A neural measure of behavioral engagement: task-residual low-frequency blood oxygenation level-dependent activity in the precuneus. NeuroImage. 2010;49(2):1911-8. https://doi.org/10.1016/j.neuroimage.2009.09.004
  132. Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2011;32(5):773-85. https://doi.org/10.1007/s10072-011-0636-y