DOI QR코드

DOI QR Code

Autonomous Feeding Robot and its Ultrasonic Obstacle Classification System

자동 사료 급이 로봇과 초음파 장애물 분류 시스템

  • Kim, Seung-Gi (Korea Orthopedics & Rehabilitation Engineering Center) ;
  • Lee, Yong-Chan (School of EE, Kyungpook National University) ;
  • Ahn, Sung-Su (Daegu Mechatronics & Materials Institute) ;
  • Lee, Yun-Jung (School of Electronics Engineering, Kyungpook National University)
  • Received : 2018.05.01
  • Accepted : 2018.07.19
  • Published : 2018.08.01

Abstract

In this paper, we propose an autonomous feeding robot and its obstacle classification system using ultrasonic sensors to secure the driving safety of the robot and efficient feeding operation. The developed feeding robot is verified by operation experiments in a cattle shed. In the proposed classification algorithm, not only the maximum amplitude of the ultrasonic echo signal but also two gradients of the signal and the variation of amplitude are considered as the feature parameters for object classification. The experimental results show the efficiency of the proposed classification method based on the Support Vector Machine, which is able to classify objects or obstacles such as a human, a cow, a fence and a wall.

Keywords

References

  1. Livestock Trend Survey: Number of Farms and Cattle, Statistics Korea, 2017.
  2. J. G. Park and J. O. Kim, "Development of Milk Feeding Robot System for Individual Management of Calves", Journal of Korean Institute of Information Technology, vol. 13, no. 2, pp. 35-44, Feb. 2015. https://doi.org/10.14801/jkiit.2015.13.2.35
  3. H. K. Kim, S. J. Moon, J. D. Lee, and S. O. Choi, "Cattle Shed Management System Based on Wireless Sensor Network with Bio and Environmental Sensors", The Journal of Korean Institute of Communications and Information Sciences, vol. 38, no. 7, pp. 573-586, July. 2013.
  4. H. G. Kim, C. J. Yang, and H. Yoe, "Design and Implementation of Livestock Disease Forecasting System", The Journal of Korean Institute of Communications and Information Sciences, vol. 37, no. 12, pp. 1263-1270, Dec. 2012.
  5. http://www.lelycenter.com/
  6. http://jinyoungcage.com/
  7. http://www.samwooinc.net/
  8. http://leeten.co.kr/product/
  9. http://www.silti.co.kr/
  10. http://www.chco.co.kr/
  11. http://www.nias.go.kr/
  12. https://www.lely.com/solutions/feeding/
  13. S. S. Ahn, Y. C. Lee, J. H. Yoo, and Y. J. Lee, "Development and Verification of the Automated Cow-Feeding System Driven by AGV", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 3, pp. 232-241, 2017. https://doi.org/10.5762/KAIS.2017.18.3.232
  14. J. H. Ko. W. T. Kim, and M. J. Chung. "A Method of Acoustic Landmark Extraction for mobile Robot Navigaion", IEEE Trans. On Robotics and Automation, vol. 12, pp. 478-485, Jun. 1996. https://doi.org/10.1109/70.499829
  15. H. C. Cho, K. S. Lee. "A Study on System of Object Recognition Using Ultrasonic Sensor", Journal of the Korean institute of illuminating and electrical installation engineers, vol. 12, no. 3, pp. 74-82, Aug. 1998.
  16. C. S. Kim, B. J. Choi, Y. J. Lee, and S. R. Lee, "Simultaneous driving system of ultrasonic sensors using codes", JCASE, vol. 10. no.11, pp. 1028-103, Nov. 2004.
  17. G. Benet, M. Martinez, F. Blanes, P. Perez, and J. E. Simo, "Differentiating walls from corners using the amplitude of ultrasonic echoes", Robotics and Autonomous Systems, vol. 50, Issue 1, pp. 13-25, Jan. 2005. https://doi.org/10.1016/j.robot.2004.07.011
  18. L. Kleeman, R. Kuc. "Mobile robot sonar for target localization and classification", The International Journal of Robotics Research, vol. 14, no. 4, pp. 295-318, Aug. 1995. https://doi.org/10.1177/027836499501400401
  19. J. M. Martin Abreu, T. Freire Bastos and L. Calderon. "Ultrasonic echoes from complex surfaces: an application to object recognition", Sensors and Actuators, vol 31, Issues 1-3, pp. 182-187, Mar. 1992. https://doi.org/10.1016/0924-4247(92)80102-9
  20. L. Kleeman and R. Kuc "An Optimal Sonar Array for Target Localization and Classification", IEEE Int. Conf. on Robotics and Automation, vol. 4, pp. 3130-3135, 1994.
  21. H. Peremans, K. Audenaert, and J. Van Campenhout, "A High-resolution Sensor Based on Tri-aural Perception", IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 9, pp. 36-48, Feb. 1993.
  22. A. K Aziz, R. B Kellogg, and A. B. Stephens, "Leastsquares methods for elliptic systems", Math Comp, vol. 44, no. 169, pp. 53-70, Jan. 1985. https://doi.org/10.1090/S0025-5718-1985-0771030-5
  23. P. Kamavisdar, S. Saluja, and S. Agrawal. "A Survey on Image Classification Approaches and Techniques", International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, Issue 1, pp. 1005-1009, 2013.
  24. S. Bernhard, S. Kah-Kay, J. C. B. Chris, N. Partha, P. Tomaso and V. Vladimir, "Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers", IEEE Trans. on Signal Processing, vol. 45, no. 11, pp. 2758-2765, 1997. https://doi.org/10.1109/78.650102
  25. T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. "The entire regularization path for the support vector machine", Journal of Machine Learning Research, Issue 5-7, pp. 1391-1415, Oct. 2004.