DOI QR코드

DOI QR Code

메타표면 반사계수 계산을 위한 정사각형 패치의 전기 분극률 계산

Calculation of Electric Polarizability of Square Patch for Calculating Reflection Coefficient of Metasurface

  • 이선규 (홍익대학교 전자전기공학과) ;
  • 이정해 (홍익대학교 전자전기공학과)
  • Lee, Sun-Gyu (Department of Electronic and Electrical Engineering, Hongik University) ;
  • Lee, Jeong-Hae (Department of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2018.02.06
  • 심사 : 2018.07.12
  • 발행 : 2018.08.31

초록

메타표면에 가장 많이 이용되는 전기적으로 작은 크기를 갖는 정사각형 패치에 전위 연속성을 이용하여 접선방향 전기 분극률을 계산 방법을 제안하였다. 패치의 경우, 중심에 위치한 등가 전기 쌍극자에 의한 패치 표면에서의 전위가 균일하지 않기 때문에, 분극률이 한 개의 값으로 정의되지 않는 문제가 있었다. 이를 해결하기 위하여 패치 표면을 메쉬로 나누고, 각 점에서 얻어진 분극률을 평균함으로써 등가 분극률을 계산하였다. 제안된 방법, 기존의 멱급수 3차항 근사식, 실험식의 결과를 비교하여 잘 일치함을 보였다. 제안된 방법으로 구해진 분극률을 generalized sheet transition conditions(GSTCs)에 적용하여 계산된 메타표면의 반사계수의 크기와 위상이 ANSYS HFSS(high-frequency structure simulator) 모의실험 결과와 잘 일치함을 보였다.

The tangential electric polarizability of a electrically small square patch, which is commonly used in metasurfaces, is calculated using electric potential continuity. Since the potential at the patch surface is not uniform due to the equivalent electric dipole located at the center, there is a problem in that the polarizability is not uniquely defined. To obtain equivalent polarizability, the meshes in the analysis area are divided on the patch surface, and the equivalent polarizability is calculated by averaging the polarizabilities obtained at each point. The results of the proposed method, third-power series approximation, and experimental equations are compared and verified. Finally, the magnitude and phase of the reflection coefficient of patch metasurface calculated by generalized sheet transition conditions(GSTCs) are in good agreement with the HFSS simulation results.

키워드

참고문헌

  1. J. G. Lee, J. H. Lee, "Low-profile dual-band superstrate antenna using metasurface," Progress In Electromagnetics Research C, vol. 77, pp. 175-184, 2017. https://doi.org/10.2528/PIERC17060603
  2. H. X. Xu, T. Cai, Y. Q. Zhuang, Q. Peng, G. M. Wang, and J. G. Liang, "Dual-mode transmissive metasurface and its applications in multibeam transmitarray," IEEE Antennas and Wireless Propagation Letters, vol. 65, no. 4, pp. 1797-1806, Apr. 2017. https://doi.org/10.1109/TAP.2017.2673814
  3. X. Zeng, L. Zhang, G. Wan, and M. Gao, "Active metamaterial absorber with controllable polarisation and frequency," Electronics Letters, vol. 53, no. 16, Aug. 2017.
  4. N. Hussain, K. E. Kedze, and I. Park, "Performance of a planar leaky-wave slit antenna for different values of substrate thickness," Journal of Electromagnetic Engineering and Science, vol. 17, no. 4, pp. 202-207, Oct. 2017. https://doi.org/10.26866/jees.2017.17.4.202
  5. 정희준, 임성준, "그라운드를 전환하여 주파수를 가변할 수 있는 광대역 메타물질 흡수체," 한국전자파학회논문지, 29(4), pp. 241-246, 2018년 4월. https://doi.org/10.5515/KJKIEES.2018.29.4.241
  6. E. F. Kueste, M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2641-2651, Oct. 2003. https://doi.org/10.1109/TAP.2003.817560
  7. J. W. Strutt, "On the light from the sky, its polarization and colour," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 4, vol. 41, no. 271, pp. 107-120, 1871. https://doi.org/10.1080/14786447108640452
  8. W. H. Eggimann, "Higher-order evaluation of electromagnetic diffraction by circular disks," IRE Transactions on Microwave Theory and Techniques, vol. 9, no. 5, pp. 408-418, Sep. 1961. https://doi.org/10.1109/TMTT.1961.1125362
  9. N. A. McDonald, "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 11, pp. 1146-1149, Nov. 1985. https://doi.org/10.1109/TMTT.1985.1133186
  10. N. A. McDonald, "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory and Techniques, vol. 35, no. 1, pp. 20-23, Jan. 1987. https://doi.org/10.1109/TMTT.1987.1133589
  11. H. G. Booker, "Slot aerials and their relation to complementary wire aerials(Babinet's principle)," Journal of the Institution of Electrical Engineers, vol. 93, no. 4, pp. 620-626, 1946.
  12. J. F. Douglas, E. J. Garboczi, "Intrinsic visocity and the polarizability of particles having a wide range of shapes," Advances in Chemical Physics, vol. 91, pp. 85-153, 1995.
  13. W. E. Kock, "Metallic delay lenses," Bell Labs Technical Journal, vol. 27, no. 1, pp. 58-82, Jan. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01331.x
  14. C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. John Wiley & Sons, pp. 12-18, 2012.
  15. D. K. Cheng, Fundamentals of Engineering Electromagnetics, International Edition, pp. 93-94, Addison-Wesley, 1993.
  16. C. L. Holloway, M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Transactions on Electromagnetic Compatibility, vol. 47, no. 4, pp. 853-865, Nov. 2005. https://doi.org/10.1109/TEMC.2005.853719