DOI QR코드

DOI QR Code

Photocatalysis of TiO2/WO3 Composites Synthesized by Ball Milling

볼밀을 이용한 TiO2/WO3 복합체 제조 및 광촉매 특성

  • Yu, Su-Yeol (Department of Applied Physics, Hannam University) ;
  • Nam, Chunghee (Department of Applied Physics, Hannam University)
  • 유수열 (한남대학교 광전자물리학과) ;
  • 남충희 (한남대학교 광전자물리학과)
  • Received : 2018.07.24
  • Accepted : 2018.08.14
  • Published : 2018.08.28

Abstract

Composites of P25 $TiO_2$ and hexagonal $WO_3$ nanorods are synthesized through ball-milling in order to study photocatalytic properties. Various composites of $TiO_2/WO_3$ are prepared by controlling the weight percentages (wt%) of $WO_3$, in the range of 1-30 wt%, and milling time to investigate the effects of the composition ratio on the photocatalytic properties. Scanning electron microscopy, x-ray diffraction, and transmission electron microscopy are performed to characterize the structure, shape and size of the synthesized composites of $TiO_2/WO_3$. Methylene blue is used as a test dye to analyze the photocatalytic properties of the synthesized composite material. The photocatalytic activity shows that the decomposition efficiency of the dye due to the photocatalytic effect is the highest in the $TiO_2/WO_3$ (3 wt%) composite, and the catalytic efficiency decreases sharply when the amount of $WO_3$ is further increased. As the amount of $WO_3$ added increases, dye-removal by adsorption occurs during centrifugation, instead of the decomposition of dyes by photocatalysts. Finally, $TiO_2/WO_3$ (3 wt%) composites are synthesized with various milling times. Experimental results show that the milling time has the best catalytic efficiency at 30 min, after which it gradually decreases. There is no significant change after 1 hour.

Keywords

References

  1. G. Lee, J. Kim, J. Lim, J. Lee, J. Park, S. Lee, J. Nam and Y.-W. Lee: J. Korean Soc. Water Environ., 31 (2015) 42. https://doi.org/10.15681/KSWE.2015.31.1.42
  2. P. Basnet and Y. Zhao: J. Mater. Chem. A, 2 (2014) 911. https://doi.org/10.1039/C3TA14000H
  3. C. Byrne, G. Subramanianc and S. C. Pillai: J. Environ. Chem. Eng., 6 (2017) 3531.
  4. A. J. Haider, R. H. AL-Anbari, G. R. Kadhim and C. T. Salame: Energy Procedia, 119 (2017) 332. https://doi.org/10.1016/j.egypro.2017.07.117
  5. M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W. Daud: J. Mol. Liq., 258 (2018) 354. https://doi.org/10.1016/j.molliq.2017.11.030
  6. K. D. Kumar, G. P. Kumar and K. S. Reddy: Mater. Today Proc., 2 (2015) 3736. https://doi.org/10.1016/j.matpr.2015.07.204
  7. T. Peng, S. Ray, S. S. Veeravalli, J. A. Lalman and F. Arefi-Khonsari: Mater. Res. Bull., 105 (2018) 104. https://doi.org/10.1016/j.materresbull.2018.04.021
  8. S. Yu and C. Nam: J. Korean Powder Metall. Inst., 24 (2017) 483. https://doi.org/10.4150/KPMI.2017.24.6.483
  9. C. Shifu, C. Lei, G. Shen and C. Gengyu: Powder Technol., 160 (2005) 198. https://doi.org/10.1016/j.powtec.2005.08.012
  10. V. Navarro, O. Rodríguez de la Fuente, A. Mascaraque and J. M. Rojo: Phys. Rev. B, 78 (2008) 224107. https://doi.org/10.1103/PhysRevB.78.224107
  11. G. Zerjava, M. S. Arshad, P. Djinovic, J. Zavasnik and A. Pintar: Appl. Catal. B- Environ., 209 (2017) 273. https://doi.org/10.1016/j.apcatb.2017.02.059
  12. S. Begin-Colin, A. Gadalla, G. L. Caer, O. Humbert, F. Thomas, O. Barres, F. Villieras, L. F. Toma, G. Bertrand, O. Zahraa, M. Gallart, B. Honerlage and P. Gilliot: J. Phys. Chem. C, 113 (2009) 16589. https://doi.org/10.1021/jp900108a
  13. S. Indris, R. Amade, P. Heitjans, M. Finger, A. Haeger, D. Hesse, W. Gru1nert, A. Bo1rger and K. D. Becker: J. Phys. Chem. B, 109 (2005) 23274. https://doi.org/10.1021/jp054586t
  14. X. Fu, Y. Hu, Y. Yang, W. Liu and S. Chen: J. Hazard. Mater., 244 (2013) 102.
  15. Y. Li, X. Li, J. Li and J. Yin: Water Res., 40 (2006) 1119. https://doi.org/10.1016/j.watres.2005.12.042