DOI QR코드

DOI QR Code

Construction of a Bioluminescent Labelling Plasmid Vector for Bifidobacteria

  • Moon, Gi-Seong (Department of Biotechnology, Korea National University of Transportation) ;
  • Narbad, Arjan (Translational Microbiome (Narbad Group), Quadram Institute Bioscience)
  • Received : 2018.06.11
  • Accepted : 2018.07.06
  • Published : 2018.08.31

Abstract

Bifidobacterium is recognized as one of the most beneficial microorganisms in our gut. Many researches on bifidobacteria have been done to understand their roles in the gut. The objective of the present study was to develop a bioluminescent labelling plasmid vector for bifidobacteria to facilitate their visualization in vitro, in situ, and in vivo. A plasmid replicon (2.0 kb) of plasmid pFI2576 previously identified from B. longum FI10564 was amplified by PCR and cloned into pUC19 plasmid vector (2.68 kb). The cloned replicon was subcloned into pTG262 ($luc^+$) recombinant plasmid vector (7.4 kb) where a luciferase gene ($luc^+$) from pLuc2 (8.5 kb), an Escherichia coli and lactobacilli shuttle vector, was inserted into pTG262 plasmid vector. The final recombinant DNA, pTG262::pFI2576 rep ($luc^+$), was transferred into a B. catenulatum strain. This recombinant strain showed 3,024 relative luminescence units at $OD_{600}$ value of 0.352. Thus, this recombinant plasmid construct can be broadly used for labelling bifidobacteria.

Keywords

References

  1. Alard J, Peucelle V, Boutillier D, Breton J, Kuylle S, Pot B, Holowacz S, Grangette C. 2018. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Benef Microbes 9:317-331. https://doi.org/10.3920/BM2017.0097
  2. Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA. 2018. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol (in press).
  3. Argnani A, Leer RJ, van Luijk N, Pouwels PH. 1996. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. Microbiology 142:109-114. https://doi.org/10.1099/13500872-142-1-109
  4. Cronin M, Akin AR, Francis KP, Tangney M. 2016. In vivo bioluminescence imaging of intratumoral bacteria. Methods Mol Biol 1409:69-77.
  5. Cronin M, Sleator RD, Hill C, Fitzgerald GF, van Sinderen D. 2008. Development of a luciferase-based reporter system to monitor Bifidobacterium breve UCC2003 persistence in mice. BMC Microbiol 8:161. https://doi.org/10.1186/1471-2180-8-161
  6. Drouault S, Corthier G, Ehrlich SD, Renault P. 1999. Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl Environ Microbiol 65:4881-4886.
  7. Eom JE, Ahn WG, Her S, Moon GS. 2015. Construction of bioluminescent Lactobacillus casei CJNU 0588 for murine whole body imaging. Food Sci Biotechnol 24:595-599. https://doi.org/10.1007/s10068-015-0077-0
  8. Escribano J, Ferre N, Gispert-Llaurado M, Luque V, Rubio-Torrents C, Zaragoza-Jordana M, Polanco I, Codoner FM, Chenoll E, Morera M, Moreno-Munoz JA, Rivero M, Closa-Monasterolo R. 2018. Bifidobacterium longum subsp. infantis CECT7210-supplemented formula reduces diarrhea in healthy infants: A randomized controlled trial. Pediatr Res 83:1120-1128. https://doi.org/10.1038/pr.2018.34
  9. Felis GE, Dellaglio F. 2007. Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8:44-61.
  10. Fernandez A, Horn N, Wegmann U, Nicoletti C, Gasson MJ, Narbad A. 2009. Enhanced secretion of biologically active murine interleukin-12 by Lactococcus lactis. Appl Environ Microbiol 75:869-871. https://doi.org/10.1128/AEM.01728-08
  11. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543-547. https://doi.org/10.1038/nature09646
  12. Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU. 2014. Expression of fluorescent proteins in bifidobacteria for analysis of host-microbe interactions. Appl Environ Microbiol 80:2842-2850. https://doi.org/10.1128/AEM.04261-13
  13. Guglielmetti S, Ciranna A, Mora D, Parini C, Karp M. 2008. Construction, characterization and exemplificative application of bioluminescent Bifidobacterium longum biovar longum. Int J Food Microbiol 124:285-290. https://doi.org/10.1016/j.ijfoodmicro.2008.03.033
  14. Kang J, Chung WH, Lim TJ, Lim S, Nam YD. 2017. Complete genome sequence of the Bifidobacterium animalis subspecies lactis BL3, preventive probiotics for acute colitis and colon cancer. New Microbes New Infect 19:34-37.
  15. Karimi S, Ahl D, Vagesjo E, Holm L, Phillipson M, Jonsson H, Roos S. 2016. In vivo and in vitro detection of luminescent and fluorescent Lactobacillus reuteri and application of red fluorescent mCherry for assessing plasmid persistence. PLoS One 11:e0151969. https://doi.org/10.1371/journal.pone.0151969
  16. Kleerebezem M, Vaughan EE. 2009. Probiotic and gut lactobacilli and bifidobacteria: Molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269-290. https://doi.org/10.1146/annurev.micro.091208.073341
  17. Lee KH, Park WJ, Kim JY, Kim HG, Lee JM, Kim JH, Park JW, Lee JH, Chung SK, Chung DK. 2007. Development of a monitoring vector for Leuconostoc mesenteroides using the green fluorescent protein gene. J Microbiol Biotechnol 17:1213-1216.
  18. Linares DM, Gomez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846. https://doi.org/10.3389/fmicb.2017.00846
  19. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R. 2004. Quantitative PCR with 16S rRNAgene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167-173. https://doi.org/10.1128/AEM.70.1.167-173.2004
  20. Moon GS, Narbad A. 2017. Monitoring of bioluminescent Lactobacillus plantarum in a complex food matrix. Korean J Food Sci An 37:147-152. https://doi.org/10.5851/kosfa.2017.37.1.147
  21. Moon GS, Wegmann U, Gunning AP, Gasson MJ, Narbad A. 2009. Isolation and characterization of a theta-type cryptic plasmid from Bifidobacterium longum FI10564. J Microbiol Biotechnol 19:403-408. https://doi.org/10.4014/jmb.0806.378
  22. Ninomiya K, Yamada R, Matsumoto M, Fukiya S, Katayama T, Ogino C, Shimizu N. 2013. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations. J Biosci Bioeng 115:196-199. https://doi.org/10.1016/j.jbiosc.2012.09.006
  23. Ogawa M, Takakura H. 2018. In vivo molecular imaging for biomedical analysis and therapies. Anal Sci 34:273-281. https://doi.org/10.2116/analsci.34.273
  24. Rajani C, Jia W. 2018. Disruptions in gut microbial-host co-metabolism and the development of metabolic disorders. Clin Sci (Lond) 132:791-811. https://doi.org/10.1042/CS20171328
  25. Ruiz L, Delgado S, Ruas-Madiedo P, Sanchez B, Margolles A. 2017. Bifidobacteria and their molecular communication with the immune system. Front Microbiol 8:2345. https://doi.org/10.3389/fmicb.2017.02345
  26. Sambrook J, Russell DW. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, NY, USA. A3.2-3.3.
  27. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. 2018. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell 9:397-403. https://doi.org/10.1007/s13238-018-0546-3
  28. Tejero-Sarinena S, Barlow J, Costabile A, Gibson GR, Rowland I. 2012. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 18:530-538. https://doi.org/10.1016/j.anaerobe.2012.08.004
  29. Tengeler AC, Kozicz T, Kiliaan AJ. 2018. Relationship between diet, the gut microbiota, and brain function. Nutr Rev 76:603-617. https://doi.org/10.1093/nutrit/nuy016
  30. Zhang P, Meng X, Li D, Calderone R, Mao D, Sui B. 2018. Commensal homeostasis of gut microbiota-host for the impact of obesity. Front Physiol 8:1122. https://doi.org/10.3389/fphys.2017.01122