참고문헌
- M.-S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 36 (2006), no. 3, 783-798. https://doi.org/10.1216/rmjm/1181069429
- S. Breaz, P. Danchev, and Y. Zhou, Rings in which every element is either a sum or a difference of a nilpotent and an idempotent, J. Algebra Appl. 15 (2016), no. 8, 1650148, 11 pp. https://doi.org/10.1142/S0219498816501486
- G. Calugareanu, UU rings, Carpathian J. Math. 31 (2015), no. 2, 157-163.
- A. J. Diesl, Nil clean rings, J. Algebra 383 (2013), 197-211. https://doi.org/10.1016/j.jalgebra.2013.02.020
- S. K. Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2012.
- T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999.
- W. Wm. McGovern, Clean semiprime f-rings with bounded inversion, Comm. Algebra 31 (2003), no. 7, 3295-3304. https://doi.org/10.1081/AGB-120022226
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
- W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583-3592. https://doi.org/10.1080/00927879908826649
- W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasg. Math. J. 46 (2004), no. 2, 227-236. https://doi.org/10.1017/S0017089504001727