과제정보
연구 과제 주관 기관 : NAFOSTED
참고문헌
- D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal. 173 (2000), no. 1, 214-255. https://doi.org/10.1006/jfan.2000.3563
-
G. Carron, Une suite exacte en
$L^2$ -cohomologie, Duke Math. J. 95 (1998), no. 2, 343-372. https://doi.org/10.1215/S0012-7094-98-09510-2 -
G. Carron,
$L^2$ harmonic forms on non-compact Riemannian manifolds, in Surveys in analysis and operator theory (Canberra, 2001), 49-59, Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, 2002. - S.-C. Chang, J.-T. Chen, and S. W. Wei, Liouville properties for p-harmonic maps with finite q-energy, Trans. Amer. Math. Soc. 368 (2016), no. 2, 787-825. https://doi.org/10.1090/tran/6351
- L.-C. Chang, C.-L. Guo, and C.-J. A. Sung, p-harmonic 1-forms on complete manifolds, Arch. Math. (Basel) 94 (2010), no. 2, 183-192. https://doi.org/10.1007/s00013-009-0079-3
- J.-T. R. Chen and C.-J. A. Sung, Harmonic forms on manifolds with weighted Poincare inequality, Pacific J. Math. 242 (2009), no. 2, 201-214. https://doi.org/10.2140/pjm.2009.242.201
- D. Cibotaru and P. Zhu, Refined Kato inequalities for harmonic fields on Kahler manifolds, Pacific J. Math. 256 (2012), no. 1, 51-66. https://doi.org/10.2140/pjm.2012.256.51
-
N. T. Dung, p-harmonic
${\ell}$ -forms on Riemannian manifolds with a weighted Poincare inequality, Nonlinear Anal. 150 (2017), 138-150. https://doi.org/10.1016/j.na.2016.11.008 - N. T. Dung and N. D. Dat, Weighted p-harmonic functions and rigidity of smooth metric measure spaces, J. Math. Anal. Appl. 443 (2016), no. 2, 959-980. https://doi.org/10.1016/j.jmaa.2016.05.065
- N. T. Dung and K. Seo, p-harmonic functions and connectedness at infinity of complete submanifolds in a Riemannian manifold, Ann. Mat. Pura Appl. (4) 196 (2017), no. 4, 1489-1511. https://doi.org/10.1007/s10231-016-0625-0
- N. T. Dung and C.-J. A. Sung, Manifolds with a weighted Poincare inequality, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1783-1794. https://doi.org/10.1090/S0002-9939-2014-11971-X
- F. Duzaar and M. Fuchs, On removable singularities of p-harmonic maps, Ann. Inst. H. Poincare Anal. Non Lineaire 7 (1990), no. 5, 385-405. https://doi.org/10.1016/S0294-1449(16)30283-9
- D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727.
- B. Kotschwar and L. Ni, Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula, Ann. Sci. Ec. Norm. Super. (4) 42 (2009), no. 1, 1-36. https://doi.org/10.24033/asens.2089
- K.-H. Lam, Results on a weighted Poincare inequality of complete manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 10, 5043-5062. https://doi.org/10.1090/S0002-9947-10-04894-4
- P. Li, On the Sobolev constant and the p-spectrum of a compact Riemannian manifold, Ann. Sci. Ecole Norm. Sup. (4) 13 (1980), no. 4, 451-468. https://doi.org/10.24033/asens.1392
- P. Li, Geometric Analysis, Cambridge Studies in Advanced Mathematics, 134, Cambridge University Press, Cambridge, 2012.
- P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58 (2001), no. 3, 501-534. https://doi.org/10.4310/jdg/1090348357
- P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), no. 6, 921-982. https://doi.org/10.1016/j.ansens.2006.11.001
- H. Lin, On the structure of submanifolds in Euclidean space with flat normal bundle, Results Math. 68 (2015), no. 3-4, 313-329. https://doi.org/10.1007/s00025-015-0435-5
- H. Lin, On the structure of conformally flat Riemannian manifolds, Nonlinear Anal. 123/124 (2015), 115-125. https://doi.org/10.1016/j.na.2015.05.001
-
H. Lin,
$L^2$ harmonic forms on submanifolds in a Hadamard manifold, Nonlinear Anal. 125 (2015), 310-322. https://doi.org/10.1016/j.na.2015.05.022 - H. Lin, On the structure of submanifolds in the hyperbolic space, Monatsh. Math. 180 (2016), no. 3, 579-594. https://doi.org/10.1007/s00605-015-0851-3
- R. Moser, The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 1, 77-83.
- N. Nakauchi, A Liouville type theorem for p-harmonic maps, Osaka J. Math. 35 (1998), no. 2, 303-312.
- R. Schoen and S.-T. Yau, Lectures on differential geometry, translated from the Chinese by Ding and S. Y. Cheng, with a preface translated from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994.
-
K. Seo,
$L^p$ harmonic 1-forms and first eigenvalue of a stable minimal hypersurface, Pacific J. Math. 268 (2014), no. 1, 205-229. https://doi.org/10.2140/pjm.2014.268.205 - C.-J. A. Sung and J.Wang, Sharp gradient estimate and spectral rigidity for p-Laplacian, Math. Res. Lett. 21 (2014), no. 4, 885-904. https://doi.org/10.4310/MRL.2014.v21.n4.a14
-
S. Tanno,
$L^2$ harmonic forms and stability of minimal hypersurfaces, J. Math. Soc. Japan 48 (1996), no. 4, 761-768. https://doi.org/10.2969/jmsj/04840761 - P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126-150. https://doi.org/10.1016/0022-0396(84)90105-0
-
M. Vieira, Vanishing theorems for
$L^2$ harmonic forms on complete Riemannian manifolds, Geom. Dedicata 184 (2016), 175-191. https://doi.org/10.1007/s10711-016-0165-1 - T. Y. H. Wan and Y. L. Xin, Vanishing theorems for conformally compact manifolds, Comm. Partial Differential Equations 29 (2004), no. 7-8, 1267-1279. https://doi.org/10.1081/PDE-200033728
-
X. Wang, On the
$L^2$ -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J. 115 (2002), no. 2, 311-327. https://doi.org/10.1215/S0012-7094-02-11523-3 - X. Zhang, A note on p-harmonic 1-forms on complete manifolds, Canad. Math. Bull. 44 (2001), no. 3, 376-384. https://doi.org/10.4153/CMB-2001-038-2
- P. Zhu, Harmonic two-forms on manifolds with non-negative isotropic curvature, Ann. Global Anal. Geom. 40 (2011), no. 4, 427-434. https://doi.org/10.1007/s10455-011-9265-1
-
P. Zhu,
$L^2$ -harmonic forms and stable hypersurfaces in space forms, Arch. Math. (Basel) 97 (2011), no. 3, 271-279. https://doi.org/10.1007/s00013-011-0281-y - P. Zhu, Rigidity of complete minimal hypersurfaces in the Euclidean space, Results Math. 71 (2017), no. 1-2, 63-71. https://doi.org/10.1007/s00025-015-0513-8