References
- Abe, K. and Kimura, H. 1996. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066-1071 https://doi.org/10.1523/JNEUROSCI.16-03-01066.1996
- Adams, C. A., Kuriyama, H., Lloyd, D. and Murray, D. B. 2003. The Gts1 protein stabilizes the autonomous oscillator in yeast. Yeast 20, 463-470. https://doi.org/10.1002/yea.976
- Barrio, R. A., Zhang, L. and Maini, P. K. 1997. Hierarchically coupled ultradian oscillators generating robust circadian rhythms. Bull. Math. Biol. 59, 517-532. https://doi.org/10.1007/BF02459463
- Benjamin, J. T. D. and Joel, M. K. 2017. Live cell imaging reveals pH oscillations in Saccharomyces cerevisiae during metabolic transitions. Sci. Rep. 7, 13922. https://doi.org/10.1038/s41598-017-14382-0
- Bier, M., Teusink, B., Kholodenko, B. N. and Westerhoff, H. V. 1996. Control analysis of glycolytic oscillations. Biophys. Chem. 62, 15-24. https://doi.org/10.1016/S0301-4622(96)02195-3
- Cazzador, L. 1991. Analysis of oscillations in yeast continuous cultures by a new simplified model. Bull. Math. Biol. 53, 685-700. https://doi.org/10.1007/BF02461549
- Chen, C. I. and McDonald, K. A. 1990. Oscillatory behavior of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism. Biotechnol. Bioeng. 36, 28-38. https://doi.org/10.1002/bit.260360105
- Cui, W., Chen, H., Zhu, K., Jin, Q., Xie, Y., Cui, J., Xia, Y., Zhang, J. and Shen, W. 2014. Cadmium-induced hydrogen sulfide synthesis is involved in cadmium tolerance in Medicago sativa by reestablishment of reduced (homo)glutathione and reactive oxygen species homeostasis. PLoS One 9, e109669. https://doi.org/10.1371/journal.pone.0109669
- Dowse, H. B. and Ringo, J. M. 1987. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators. J. Biol. Rhythms 2, 65-76. https://doi.org/10.1177/074873048700200106
- du Preez, F. B., van Niekerk, D. D., Kooi, B., Rohwer, J. M. and Snoep, J. L. 2012. From steady-state to synchronized yeast glycolytic oscillations I: model construction. FEBS J. 279, 2810-2822. https://doi.org/10.1111/j.1742-4658.2012.08665.x
- Eelderink-Chen, Z., Mazzotta, G., Sturre, M., Bosman, J., Roenneberg, T. and Merrow, M. 2010. A circadian clock in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 117, 2043-2047.
- Garcia-Mata, C. and Lamattina, L. 2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol. 188, 977-984. https://doi.org/10.1111/j.1469-8137.2010.03465.x
- Gustavsson, A. K., van Niekerk, D. D., Adiels, C. B., Goksor, M. and Snoep, J. L. 2014. Heterogeneity of glycolytic oscillatory behavior in individual yeast cells. FEBS Lett. 588, 3-7. https://doi.org/10.1016/j.febslet.2013.11.028
- Hans, M. A., Heinzle, E. and Wittmann, C. 2003. Free intracellular amino acid pools during autonomous oscillations in Saccharomyces cerevisiae. Biotechnol. Bioeng. 82, 143-151. https://doi.org/10.1002/bit.10553
- Henson, M. A. 2004. Modeling the synchronization of yeast respiratory oscillations. J. Theor. Biol. 231, 443-458. https://doi.org/10.1016/j.jtbi.2004.07.009
- Isogai, A., Utsunomiya, H., Kanda, R. and Iwata, H. 2005. Changes in the aroma compounds of sake during aging. J. Agric. Food Chem. 53, 4118-4123. https://doi.org/10.1021/jf047933p
- Jules, M., François, J. and Parrou, J. L. 2005. Autonomous oscillations in Saccharomyces cerevisiae during batch cultures on trehalose. FEBS J. 272, 1490-1500. https://doi.org/10.1111/j.1742-4658.2005.04588.x
- Keulers, M., Suzuki, T., Satroutdinov, A. D. and Kuriyama, H. 1996. Autonomous metabolic oscillation in continuous culture of Saccharomyces cerevisiae grown on ethanol. FEMS Microbiol. Lett. 142, 253-258. https://doi.org/10.1111/j.1574-6968.1996.tb08439.x
- Klevecz, R. R., Bolen, J., Forrest, G. and Murray, D. B. 2004. A genomewide oscillation in transcription gates DNA replication and cell cycle. Proc. Natl. Acad. Sci. USA. 101, 1200-1205. https://doi.org/10.1073/pnas.0306490101
-
Kwak, W. J., Kwon, G. S., Jin, I., Kuriyama, H. and Sohn, H. Y. 2003. Involvement of oxidative stress in the regulation of
$H_2S$ production during ultradian metabolic oscillation of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 219, 99-104. https://doi.org/10.1016/S0378-1097(02)01198-9 - Liu, W., Wang, J., Mitsui, K., Shen, H. and Tsurugi, K. 2002. Interaction of the GTS1 gene product with glyceraldehyde-3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 269, 3560-3569. https://doi.org/10.1046/j.1432-1033.2002.03047.x
- Lloyd, D. and Murray, D. B. 2006. The temporal architecture of eukaryotic growth. FEBS Lett. 580, 2830-2835. https://doi.org/10.1016/j.febslet.2006.02.066
- Lloyd, D., Eshantha, L., Salgado, J., Turner, M. P. and Murray, D. B. 2002. Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett. 519, 41-44. https://doi.org/10.1016/S0014-5793(02)02704-7
- Lloyd, D., Salgado, L. E. J., Turner, M. P., Suller, M. T. E. and Murray, D. 2002. Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148, 3715-3724. https://doi.org/10.1099/00221287-148-11-3715
- Machne, R. and Murray, D. B. 2012. The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin. PLoS One 7, e37906. https://doi.org/10.1371/journal.pone.0037906
- Murray, D. B., Engelen, F., Lloyd, D. and Kuriyama, H. 1999. Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145, 2739-2745. https://doi.org/10.1099/00221287-145-10-2739
- Murray, D. B., Klevecz, R. R. and Lloyd, D. 2003. Generation and maintenance of synchrony in Saccharomyces cerevisiae continuous culture. Exp. Cell Res. 287, 10-15. https://doi.org/10.1016/S0014-4827(03)00068-5
- Murray, D. B., Roller, S., Kuriyama, H. and Lloyd, D. 2001. Clock control of ultradian respiratory oscillation found during yeast continuous culture. J. Bacteriol. 183, 7253-7259. https://doi.org/10.1128/JB.183.24.7253-7259.2001
- Paetkau, V., Edwards, R. and Illner, R. 2006. A model for generating circadian rhythm by coupling ultradian oscillators. Theor. Biol. Med. Model. 3, 12. https://doi.org/10.1186/1742-4682-3-12
- Palkova, Z. and Forstova, J. 2000. Yeast colonies synchronise their growth and development. J. Cell Sci. 113, 1923-1928.
- Palkova, Z., Devaux, F., Icicova, M., Minarikova, L., Le Crom, S. and Jacq, C. 2002. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol. Biol. Cell 13, 3901-3914. https://doi.org/10.1091/mbc.e01-12-0149
- Palkova, Z., Janderova, B., Gabriel, J., Zikanova, B., Pospisek, M. and Forstova, J. 1997. Ammonia mediates communication between yeast colonies. Nature 390, 532-536. https://doi.org/10.1038/37398
- Ray, S. and Reddy, A. B. 2016. Cross-talk between circadian clocks, sleep-wake cycles, and metabolic networks: Dispelling the darkness. Bioassys 38, 394-405. https://doi.org/10.1002/bies.201500056
- Refinetti, R. 2012. Integration of biological clocks and rhythms. Compr. Physiol. 2, 1213-1239.
- Reinke, H. and Gatfield, D. 2006. Genome-wide oscillation of transcription in yeast. Trends Biochem. Sci. 31, 189-191. https://doi.org/10.1016/j.tibs.2006.02.001
- Richard, P. 2003. The rhythm of yeast. FEMS Microbiol. Rev. 27, 547-557. https://doi.org/10.1016/S0168-6445(03)00065-2
- Robertson, J. B., Davis, C. R. and Johnson, C. H. 2013. Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc. Natl. Acad. Sci. USA. 110, 21130-21135. https://doi.org/10.1073/pnas.1313369110
- Saito, T., Mitsui, K., Hamada, Y. and Tsurugi, K. 2002. Regulation of the Gts1p level by the ubiquitination system to maintain metabolic oscillations in the continuous culture of yeast. J. Biol. Chem. 277, 33624-33631 https://doi.org/10.1074/jbc.M201909200
- Satroutdinov, A. D., Kuriyama, H. and Kobayashi, H. 1992. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol. Lett. 77, 261-267.
- Silva, A. S. and Yunes, J. A. 2006. Conservation of glycolytic oscillations in Saccharomyces cerevisiae and human pancreatic beta-cells: a study of metabolic robustness. Genet. Mol. Res. 5, 525-535.
- Sohn, H. and Kuriyama, H. 2001. The role of amino acids in the regulation of hydrogen sulfide production during ultradian respiratory oscillation of Saccharomyces cerevisiae. Arch. Microbiol. 176, 69-78. https://doi.org/10.1007/s002030100295
- Sohn, H. and Kuriyama, H. 2001. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Yeast 18, 125-135. https://doi.org/10.1002/1097-0061(20010130)18:2<125::AID-YEA655>3.0.CO;2-9
- Sohn, H. Y., Kum, E. J., Kwon, G. S., Jin, I. and Kuriyama, H. 2005. Regulation of branched-chain, and sulfur-containing amino acid metabolism by glutathione during ultradian metabolic oscillation of Saccharomyces cerevisiae. J. Microbiol. 43, 375-380.
-
Sohn, H. Y., Kum, E. J., Kwon, G. S., Jin, I., Adams, C. A. and Kuriyama, H. 2005. GLR1 plays an essential role in the homeodynamics of glutathione and the regulation of
$H_2S$ production during respiratory oscillation of Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 69, 2450-2454. https://doi.org/10.1271/bbb.69.2450 - Sohn, H. Y., Murray, D. B. and Kuriyama, H. 2000. Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony. Yeast 16, 1185-1190. https://doi.org/10.1002/1097-0061(20000930)16:13<1185::AID-YEA619>3.0.CO;2-W
- Uno, T., Wang, J., Mitsui, K., Umetani, K., Tamura, K. and Tsurugi, K. 2002. Ultradian rhythm of trehalose levels coupled to heat resistance in continuous cultures of the yeast Saccharomyces cerevisiae. Chronobiol. Int. 19, 361-375. https://doi.org/10.1081/CBI-120002916
-
Vadivel, A., Alphonse, R. S., Ionescu, L., Machado, D. S., O'Reilly, M., Eaton, F., Haromy, A., Michelakis, E. D. and Thebaud, B. 2014. Exogenous hydrogen sulfide (
$H_2S$ ) protects alveolar growth in experimental$O_2$ -induced neonatal lung injury. PLoS One 9, e90965. https://doi.org/10.1371/journal.pone.0090965 - Wang, J., Liu, W., Uno, T., Tonozuka, H., Mitsui, K. and Tsurugi, K. 2000. Cellular stress responses oscillate in synchronization with the ultradian oscillation of energy metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 189, 9-13. https://doi.org/10.1111/j.1574-6968.2000.tb09198.x
- Wheeler, D. A., Kyriacou, C. P., Greenacre, M. L., Yu, Q., Rutila, J. E., Rosbash, M. and Hall, J. C. 1991. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science 251, 1082-1085. https://doi.org/10.1126/science.1900131
- Wolf, J., Sohn, H., Heinrich, R. and Kuriyama, H. 2001. Mathematical analysis of a mechanism for autonomous metabolic oscillations in continuous culture of Saccharomyces cerevisiae. FEBS Lett. 499, 230-234. https://doi.org/10.1016/S0014-5793(01)02562-5
- Zhang, H., Jiao, H., Jiang, C. X., Wang, S. H. and Wei, Z. J. 2010. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol. Plant 32, 849-857. https://doi.org/10.1007/s11738-010-0469-y