DOI QR코드

DOI QR Code

Structural Properties of ZnS Nanoparticles by Hydrothermal Synthesis Process Conditions and Optical Properties of Ceramic

수열합성 공정 변화에 따른 ZnS 나노분말의 구조 특성과 소결체의 광학적 특성

  • Yeo, Seo-Yeong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kwon, Tae-Hyeong (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Chang-Il (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Yun, Ji-Sun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Jeong, Young-Hun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Hong, Youn-Woo (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Cho, Jeong-Ho (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Paik, Jong-Hoo (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology)
  • 여서영 (한국세라믹기술원 전자융합소재본부) ;
  • 권태형 (한국세라믹기술원 전자융합소재본부) ;
  • 김창일 (한국세라믹기술원 전자융합소재본부) ;
  • 윤지선 (한국세라믹기술원 전자융합소재본부) ;
  • 정영훈 (한국세라믹기술원 전자융합소재본부) ;
  • 홍연우 (한국세라믹기술원 전자융합소재본부) ;
  • 조정호 (한국세라믹기술원 전자융합소재본부) ;
  • 백종후 (한국세라믹기술원 전자융합소재본부)
  • Received : 2018.02.01
  • Accepted : 2018.03.19
  • Published : 2018.09.01

Abstract

In this paper, the ZnS nanoparticles were synthesized according to the process conditions of hydrothermal synthesis. When the molar ratio of Zn to S was 1:1.2, it was confirmed that it had a cubic single phase and a high crystal phase. After the molar ratio is fixed, hydrothermal synthesis was conducted at $180^{\circ}C$ for 24, 36, 72 and 96 h in order to confirm the structural change with the change of hydrothermal synthesis times. As the hydrothermal synthesis times increased, the particle size increased. The hydrothermal synthesized particle size for 72 h was considered to be suitable for sintering. The ZnS ceramic had a density of 99.7% and an excellent transmittance of ~70% in the long-wavelength region.

Keywords

References

  1. Y. Chen, L. Zhang, J. Zhang, P. Liu, T. Zhou, H. Zhang, D. Gong, D. Tang, and D. Shen, Opt. Mater., 50, 36 (2015). [DOI: https://doi.org/10.1016/j.optmat.2015.03.058]
  2. J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan, and C. L. Bai, Angew. Chem. Int. Ed., 117, 1295 (2005). [DOI: https://doi.org/10.1002/ange.200462057]
  3. X. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando, and D. Golberg, Prog. Mater. Sci., 56, 175 (2011). [DOI: https://doi.org/10.1016/j.pmatsci.2010.10.001]
  4. A. Rogalski and K. Chrzanowski, Metrol. Meas. Syst., 21, 565 (2014). [DOI: https://doi.org/10.2478/mms-2014-0057]
  5. Y. W. Hong and J. H. Paik, J. Korean Ceram. Soc., 17, 72(2014).
  6. C. Chlique, G. Delaizir, O. Merdrignac-Conance, C. Roucau, M. Dolle, P. Rozier, V. Bouquet, and X. H. Zhang, Opt. Mater., 33, 706 (2011). [DOI: https://doi.org/10.1016/j.optmat.2010.10.008]
  7. Y. D. Kim, K. Sonezaki, H. Maeda, and A. Kato, J. Mater. Sci., 32, 5101 (1997). [DOI: https://doi.org/10.1023/A:1018613316157]
  8. Z. Shizen, M. A. Hongli, R. Jean, M. C. Odile, A. Jean-Luc, L. Jacques, and Z. Xianghua, J. Optoelectron. Adv. Mater., 1, 667 (2007).
  9. G. Bernard-Granger, N. Benameur, C. Guizard, and M. Nygren, Scripta Mater., 60, 164 (2009). [DOI: https://doi.org/10.1016/j.scriptamat.2008.09.027]
  10. T. Ueno, M. Hasegawa, M. Yoshimura, H. Okada, T. Nishioka, K. Teraoka, A. Fujii, and S. Nakayama, Sei technical review, No 69. (Sumitomo electric, Osaka, 2009) p. 48.
  11. S. K. Dutta and G. E. Gazza, Mater. Res. Bull., 4, 791 (1969). [DOI: https://doi.org/10.1016/0025-5408(69)90001-4]
  12. A. L. Chamberlain, W. G. Fahrenholtz, G. E. Hilmas, and D. T. Ellerby, J. Am. Ceram. Soc., 87, 1170 (2004). [DOI: https://doi.org/10.1111/j.1551-2916.2004.01170.x]
  13. T. H. Kwon, S. Y. Yeo, C. S. Park, C. I. Kim, Y. W. Hong, and J. H. Paik, J. Sensor Sci. & Tech., 26, 360 (2017). [DOI: https://doi.org/10.5369/JSST.2017.26.5.360]
  14. G. H. Yue, P. X. Yan, D. Yan, X. Y. Fan, M. X. Wang, D. M. Qu, and J. Z. Liu, Appl. Phys. A., 84, 409 (2006). [DOI: https://doi.org/10.1007/s00339-006-3643-8]
  15. B. Meyer, Chem. Rev., 76, 367 (1976). [DOI: https://doi.org/10.1021/cr60301a003]
  16. M. N. Rahaman, Ceramic Processing and Sintering, 2nd ed. (Taylor and Francis, Boca Raton, FL, 2003).
  17. B. Elidrissi, M. Addou, M. Regragui, A. Bougrine, A. Kachouane, and J. C. Bernede, Mater. Chem. Phys., 68, 175 (2001). [DOI: https://doi.org/10.1016/S0254-0584(00)00351-5]
  18. A. Kajbafvala, S. Zanganeh, E. Kajbafvala, H. R. Zargar, M. R. Bayati, and S. K. Sadrnezhaad, J. Alloy. Compd., 497, 325 (2010). [DOI: https://doi.org/10.1016/j.jallcom.2010.03.057]
  19. R. Kugel and H. Taube, J. Phys. Chem., 79, 2130 (1975). [DOI: https://doi.org/10.1021/j100587a014]
  20. C. Chlique, O. Merdrignac-Conanec, N. Hakmeh, X. Zhang, and J. L. Adam, J. Am. Ceram. Soc., 96, 3070 (2013). [DOI: https://doi.org/10.1111/jace.12570]
  21. P. Singhal, P. V. Ghorpade, G. S. Shankarling, N. Singhal, S. K. Jha, R. M. Tripathi, and H. N. Ghosh, Nanoscale, 4, 1823 (2016). [DOI: https://doi.org/10.1039/c5nr07605f]
  22. H. M. Park and J. S. Park, Fourier-transform Infrared Spectroscopy (School of Research Equipment Engineers, Daejeon, 2013) p. 51.