DOI QR코드

DOI QR Code

Online Refocusing Algorithm Considering the Tilting Effect for a Small Satellite Camera

위성 카메라의 틸트 효과를 고려한 온라인 리포커싱 알고리즘

  • Lee, Da Hyun (Defence Agency for Technology and Quality, Precedent Study Planning Team) ;
  • Hwang, Jai Hyuk (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hong, Dae Gi (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 이다현 (국방기술품질원 선행연구계획팀) ;
  • 황재혁 (한국항공대학교 항공우주 및 기계공학부) ;
  • 홍대기 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2018.07.18
  • Accepted : 2018.08.21
  • Published : 2018.08.31

Abstract

Small high-resolution Earth observation satellites require precise optical alignment at the submicron level. However, misalignments can occur due to the influence of external factors during the launch and operation despite the sufficient alignment processes that take place before the launch. Thus, satellites need to realign their optical elements in orbit in what is known as a refocusing process to compensate for any misalignments. Refocusing algorithms developed for satellites have only considered de-space, which is the most sensitive factor with respect to image quality. However, the existing algorithms can cause correction error when inner and external forces generate tilt amount in an optical system. The present work suggests an improved online refocusing algorithm by considering the tilting effect for application in the case of a de-spaced and tilted optical system. In addition, the algorithm is considered to be efficient in terms of time and cost because it is designed to be used as an online method that does not require ground communication.

고해상도 지구관측 위성의 성공적인 임무 수행을 위하여 궤도 진입 후 리포커싱 과정은 필수적으로 요구된다. 마이크론 단위의 정밀한 광학 정렬을 요하는 광학 위성카메라는 발사 전 충분한 정렬 과정을 거치지만 발사 및 운용 과정에서 외부 환경에 의한 광부품의 정렬오차가 발생하게 된다. 기존의 지구관측위성들은 지상과의 통신을 통한 오프라인 방식의 리포커싱을 수행해왔으며 이는 비용 시간적 측면에서 비효율적이다. 따라서 본 논문에서는 궤도 상에서 자동초점 정렬과정이 수행되는 온라인 리포커싱 알고리즘을 제안하였다. 또한 부경의 틸팅에 따른 광학적 효과를 리포커싱 알고리즘에 적용하여 디스페이스 외 틸팅이 발생한 위성카메라에도 적용되도록 개발하였다. 리포커싱 알고리즘의 개발 및 성능평가를 위하여 실험실 수준의 광학계를 설계하였으며, 이를 기반으로 데이터를 추출하여 부경 정렬오차에 따른 MTF(Modulation Transfer Function) 경향성을 파악하였다. MTF 경향성을 바탕으로 궤도상에서의 De-space VS MTF 함수를 추정하여 알고리즘을 개발하였다. 리포커싱 알고리즘의 성능 평가는 MATLAB과 CODE V의 연동 시뮬레이션을 통하여 수행되었다.

Keywords

References

  1. J. Foust, "Emerging opportunities for low-cost small satellites in civil and commercial space," 24th Annual AIAA/USU Conference on Small Satellites, 2010.
  2. S. Lee and J. Song, "High resolution science observation satellite development trend," Science & Technology Policy 106, pp. 77-87, 1998.
  3. Y. Jang, M. Park, S. Yu, S. Park, and G. Choe, "The trend and prospect of small satellite formation flying technology," Journal of The Korean Society for Aeronautical & Space Sciences Vol. 31, No. 7, pp. 136-149, 2003. https://doi.org/10.5139/JKSAS.2003.31.7.136
  4. A. Meygret, and D. Leger, "In-flight refocusing of the SPOT-1 HRV cameras," Proceedings of SPIE 2758, pp. 209-307, 1966.
  5. D. Leger, F. Viallefont, E. Hillairet, and A. Meygret, "In-flight refocusing and MTF assessment of SPOT5 HRG and HRS cameras," Proceedings of SPIE 2758, pp. 224-231, 2003.
  6. V. Amberg, L. Bernard, and C. Latry, "Star-based defocus computing technique for PLEIADES-HR satellites," Proceedings of SPIE 9643, 9643-03, 2015.
  7. B. C. Braam, H. A. Van Mierlo, G. Buvril, and S. Gill, "Meteosat Second Generation refocusing mechanism," in Proceedings of 7th European Space Mechanisms and Tribology Symposium, B. H. Kaldeich-Schurmann 410, p. 27, 1997.
  8. M. W. Werner, T. L. Roellig, F. J. Low, G. H. Rieke, M. Rieke, W. F. Hoffmann, E. Young, J. R. Houck, B. Brandl, G. G. Fazio, J. L. Hora, R. D. Gehrz, G. Helou, B. T. Soifer, J. Stauffer, J. Keene, P. Eisenhardt, D. Gallagher, T. N. Gautier, W. Irace, C. R. Lawrence, L. Simmons, J. E. Van Cleve, M. Jura, E. L. Wright, and D. P. Cruikshank, "The Spitzer space telescope mission," The Astrophysical Journal Supplement Series Vol. 154, No. 1, pp. 1-9, 2004. https://doi.org/10.1086/422992
  9. M. Lee, J. Kim, J. Chang, and M. Kang, "Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload," Proceedings of SPIE 9972, 9972-10, 2016.
  10. J. Jang, J. Kim, S. Yang, M. Kang, and E. Kim, 'Development of thermal control system for high resolution earth observation camera," Proceedings of The Spring Conference of Korean Society for Aeronautical & Space Sciences, No. 4, pp. 889-893, 2014.
  11. D. Lee, Y. Youk, J. Yeon, S. Jang, and E. Lee, "Refocus mechanism development for high resolution electro-optical camera," Proceedings of The Autumn Conference of Korean Society Korean Society for Aeronautical & Space Sciences, No. 11, pp. 553-555, 2014.
  12. D. Kim, Y. Choi, M. Kang, E. Kim, and H. Yang, "Optical alignment of a high-resolution optical earth observation camera for small satellites," Korean Journal of Optics and Photonics Vol. 15, No. 4, pp. 391-396, 2004. https://doi.org/10.3807/KJOP.2004.15.4.391
  13. J. Jo, J. Hwang, and J. Bae, "Online refocusing algorithm for a satellite camera using stellar sources," Optics Express Vol. 24, No. 5, pp. 5411-5422, 2016. https://doi.org/10.1364/OE.24.005411
  14. R. D. Gehrz, E. A. Romana, W. F. Hoffmann, J. P. Schwenker, J. E. Mentzell, J. L. Hora, P. R. Eisenhardt, B. R. Brandl, L. Armus, K. R. Stapelfeldt, D. C. Hines, A. K. Mainzer, E. T. Young, and D. G. Elliott, "The state of the focus and image quality of the Spitzer Space Telescope as measured in orbit," Proceedings of SPIE 5487, pp. 166-176, 2004.
  15. H. G. J. Rutten and M. A. M. van Venrooij, "Telescope Optics: A Comprehensive Manual for Amateur Astronomers," Willmann-Bell, 1999.