DOI QR코드

DOI QR Code

A report of six unrecorded radiation-resistant bacterial species isolated from soil in Korea in 2018

  • Maeng, Soohyun (Department of Public Health Sciences, Graduate School, Korea University) ;
  • Sathiyaraj, Srinivasan (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Subramani, Gayathri (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Kim, Ju-Young (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Jang, Jun Hwee (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University) ;
  • Kang, Myung-Suk (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Lee, Ki-Eun (Biological Resources Utilization Department, National Institute of Biological Resources) ;
  • Lee, Eun-young (Biological Resources Utilization Department, National Institute of Biological Resources) ;
  • Kim, Myung Kyum (Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University)
  • Received : 2018.06.29
  • Accepted : 2018.08.02
  • Published : 2018.08.31

Abstract

Six bacterial strains 18JY42-3, 18SH, 18JY76-11, 17J11-11, 18JY14-14, and 18JY15-11 assigned to the phylum Proteobacteria, Firmicutes, and Actinobacteria were isolated from soil samples in Korea. The Cohnella species, strain 18JY42-3 was Gram-stain-positive, short rod-shaped and beige-colored. The Methylobacterium species, strains 18SH and 18JY76-11 were Gram-stain-negative, short rod-shaped and pink-colored. The Microterricola species, strain 17J11-11 was Gram-stain-positive, short rod-shaped and yellow-colored. The Paenarthrobacter species, strains 18JY14-14 and 18JY15-11 were Gram-stain-positive, short rod-shaped and white-colored. Phylogenetic analysis based on 16S rRNA gene sequence showed that strains 18JY42-3, 18SH, 18JY76-11, 17J11-11, 18JY14-14, and 18JY15-11 were most closely related Cohnella rhizosphaerae (MH497628; 98.8%), Methylobacterium goesingense (MH497632; 99.1%), Methylobacterium populi (MH497635; 99.9%), Microterricolagilva (MH504108; 98.4%), Paenarthrobacter nicotinovorans (MH497641; 100%), and Paenarthrobacter nitroguajacolicus (MH497646; 99.2%), respectively. All the six unrecorded strains showed resistance to UV radiation. This is the first report of these six species in Korea.

Keywords

References

  1. Atlas, R. 1997. Principles of Microbiology. New York: Mc-Grill-Hill.
  2. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  3. Garrity, G.M., J.A., Bell and T. Lilburn. 2005a. Phylum XIV. Proteobacteria phyl. nov. class III. Gammaproteobacteria class. nov. In: Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, p. 1. Edited by Brenner, D., J., Krieg, N.R., Staley, J. Tand, G.M. Garrity. New York: Springer.
  4. Im, S., D. Song, M. Joe, D. Kim, D.H. Park and S. Lim. 2013. Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. Bioprocess and Biosystems Engineering 36:781-789. https://doi.org/10.1007/s00449-013-0904-8
  5. Kampfer, P., N. Lodders, B. Huber, E. Falsen and H.J. Busse. 2008. Deinococcus aquatilis sp. nov., isolated from water. International Journal of Systematic and Evolutionary Microbiology 58:2803-2806. https://doi.org/10.1099/ijs.0.2008/001206-0
  6. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.
  7. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425.
  8. Selvam, K., J.R. Duncan, M. Tanaka and J.R. Battista. 2013. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 8(7):e69007. https://doi.org/10.1371/journal.pone.0069007
  9. Schrempf, H. 2001. Recognition and degradation of chitin by streptomycetes. Antonie van Leeuwenhoek 79:285-289. https://doi.org/10.1023/A:1012058205158
  10. Shin, N.R., T.W. Whon and J.W. Bae. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology 33(9):496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
  11. Stackebrandt, E., F.A. Rainey and N.L. Ward-Rainey. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. International Journal of Systemic Bacteriology 47:479-491. https://doi.org/10.1099/00207713-47-2-479
  12. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  13. Weisburg, W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  14. Williams, K.P., B.W. Sobral and A.W. Dickerman. 2007. A robust species tree for the Alphaproteobacteria. Journal of Bacteriology 189:4578-4586. https://doi.org/10.1128/JB.00269-07
  15. Willems, A., J. De Ley, M. Gillis and K. Kersters. 1991. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis) 1969. International Journal of Systematic Bacteriology 41:445-450. https://doi.org/10.1099/00207713-41-3-445
  16. Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews 51(2): 221-271.
  17. Yutin, N., P. Puigbo, E.V. Koonin and Y.I. Wolf. 2012. Phylogenomics of prokaryotic ribosomal proteins. PLoS ONE 7:e36972. https://doi.org/10.1371/journal.pone.0036972