DOI QR코드

DOI QR Code

Effective power for interrill erosion by rainfall-induced sheet flow

강우유발 면상흐름에 의한 세류간 침식에 대한 유효동력

  • Shin, Seung Sook (Research Center for River Flow Impingement and Debris Flow, Gangneung-Wonju National University) ;
  • Park, Sang Deog (Department of Civil Engineering, Gangneung-Wonju National University)
  • 신승숙 (강릉원주대학교 수충부 및 토석류 방재기술연구단) ;
  • 박상덕 (강릉원주대학교 토목공학과)
  • Received : 2018.03.16
  • Accepted : 2018.05.16
  • Published : 2018.08.31

Abstract

Interrill erosion on a hillslope results from the combined action of the detachment of soil particles by raindrop impact and the sediment transport of surface runoff. This study newly defined the rainfall power which detaches soil particles and the sheet-flow power contributed to sediment transport in terms of energy expenditure rate of soil erosion and presented the effective power equation for interrill erosion by rainfall-induced sheet flow. The rainfall and sheet-flow power was evaluated by factors related with rainfall, slope, and runoff and coefficients of the power equation were analyzed based on references. Futhermore it was confirmed that the relative scales between the rainfall power and the sheet-flow power according to rainfall intensity reflect on the hydrological response and physical process of interrill erosion. From application of the field data for surface runoff and soil erosion it was verified that the rainfall and sheet-flow power is an appropriate equation to estimate a interrill erosion.

사면에서의 세류간 토양침식은 빗물방울의 지표면 타격에 의한 토양입자의 박리와 면상흐름에 의한 토사이송의 상호작용에 의한 결과이다. 본 연구는 토양입자를 박리하는 강우동력과 유사이송에 기여하는 면상흐름동력을 토양침식을 위한 에너지 소비율 측면에서 새롭게 정의하고, 강우유발 면상흐름에 의한 세류간 토양침식의 유효동력 함수를 제시하였다. 강우, 경사, 유출과 관계된 인자들에 따른 강우 면상흐름의 동력을 평가하고, 기존 연구 자료를 바탕으로 이 함수의 상수들을 분석하였다. 또한 강우와 면상흐름 동력의 상대적인 크기 변화는 세류간 토양침식의 물리적 과정과 수문학적 반응을 반영함을 확인하였다. 지표유출 및 토양침식 실측자료를 세류간침식 평가 모형들에 적용한 결과 강우 면상흐름동력 함수가 가장 높은 정확도를 보여 세류간 토양침식 평가에 적합하다는 것을 확인하였다.

Keywords

References

  1. Atlas, D., and Ulbrich, C. W. (1977). "Path- and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm band." Journal of Applied Meteorology, Vol. 16, No. 12, pp. 1322-1331. https://doi.org/10.1175/1520-0450(1977)016<1322:PAAIRM>2.0.CO;2
  2. Bagnold, R. A. (1966). An approach to the sediment transport problem from general physices. U.S. Geological Survey Professional Paper 422-J.
  3. Baruah, P. C. (1973). An investigation of drop size distribution of rainfall in Thailand. MSc Thesis No. 528, Asian Institute of Technology, Bangkok.
  4. Brandt, C. J. (1990). "Simulation of the size distribution and erosivity of raindrops and throughfall drops." Earth Surface Processes and Landforms, Vol. 15, No. 8, pp. 687-698. https://doi.org/10.1002/esp.3290150803
  5. Brown, L. C., and Foster, G. R. (1987) "Storm erosivity using idealized intensity distributions." Transactions of the ASAE, Vol. 30, pp. 379-386. https://doi.org/10.13031/2013.31957
  6. Bryan, R. B. (1974). "Water erosion by splash and wash and the erodibility of Albertan soils." Geografiska Annaler. Series A, Physical Geography, Vol. 56, No. 3/4, pp. 159-181. https://doi.org/10.1080/04353676.1974.11879897
  7. Bryan, R. B., and Luk, S. H. (1981). "Laboratory experiments on the variation of soil erosion under simulated rainfall." Geoderma, Vol. 26, No. 4, pp. 245-265. https://doi.org/10.1016/0016-7061(81)90023-9
  8. Carter, C. E., Greer, J. D., Braud, H. J., and Floyd, J. M. (1974). "Raindrop characteristics in south central United States." Transactions of the ASAE, Vol. 17, pp. 1033-1037. https://doi.org/10.13031/2013.37021
  9. Chang, H. H. (1979). "Geometry of rivers in regime." Journal of the Hydraulics Division American Society of Civil Engineers, Vol. 105, No. HY6, pp. 691-706.
  10. Coutinho, M. A., and Tomas, P. P. (1995). "Characterisation of raindrop size distributions at the Vale Formoso Experimental Erosion Center." CATENA, Vol. 25, No. 1-4, pp. 187-197. https://doi.org/10.1016/0341-8162(95)00009-H
  11. Elliot, W. J., Luce, C. H., and Robichaud, P. R. (1996). "Predicting sedimentation from timber harvest areas with the wepp model." Proceedings 6th Federal Interagency Sedimentation Conference, March 10-14, Las Vegas, N.V., pp. IX-46-53.
  12. Emmett, W. W. (1970). The hydraulics of overland flow on hillslopes. USGS Professional Paper 662A. U.S. Government Printing Office, Washington, DC.
  13. Ferro V. (1998). "Evaluating overland flow sediment transport capacity." Hydrological Processes, Vol. 12, No. 12, pp. 1895-1910. https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12<1895::AID-HYP671>3.0.CO;2-6
  14. Flanagan, D. C., and Nearing, M. A. (Eds.)(1995). USDA-Water Erosion Prediction Project: technical documentation. NSERL Rep. No. 10. National Soil Erosion Research Laboratory, West Lafayette, IN.
  15. Fornis, R. L., Vermeulen, H. R., and Nieuwenhuis, J. D. (2005). "Kinetic energy-rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies." Journal of Hydrology, Vol. 300, No. 1-4, pp. 20-32. https://doi.org/10.1016/j.jhydrol.2004.04.027
  16. Gabet, E. J., and Dunne D. (2003). "Sediment detachment by rain power." Water Resources Research, Vol. 39, No. 1, pp. 1002.
  17. Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., and Miyata, S. (2011). "Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study." CATENA, Vol. 85, No. 1, pp. 34-47. https://doi.org/10.1016/j.catena.2010.11.005
  18. Holton, R. E. (1945). "Erosional development of streams and their drainage basins; Hydrophsical approach to quantitative morphology." Geological Society of America Bulletin, Vol. 56, No. 3, pp. 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  19. Hudson, N. W. (1963). "Raindrop size distribution in high intensity storms." Rhodesian Journal of Agricultural Research, Vol. 1, pp. 6-11.
  20. Kinnell, P. I. A. (1981). "Rainfall intensity-kinetic energy relationship for soil loss prediction." Soil Science Society of America Journal, Vol. 45, No. 1, pp. 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x
  21. Kinnell, P. I. A. (1991). "The effect of flow depth on sediment transport induced by raindrops impacting shallow flows." Transactions of the ASAE, Vol. 34, No. 1, pp. 161-168. https://doi.org/10.13031/2013.31639
  22. Kinnell, P. I. A. (1993). "Interrill erodibilities based on the rainfall intensity flow discharge erosivity factor." Australian Journal of Soil Research, Vol. 31, No. 3, pp. 319-332. https://doi.org/10.1071/SR9930319
  23. Lee, J. S., and Won, J. Y. (2013). "Analysis of the characteristic of monthly rainfall erosivity in Korea with derivation of rainfall energy equation." Journal of KOSHAM, Vol. 13, No. 3, pp. 177-184.
  24. Liebenow, A. M., Elliot, W. J., Laflen, J. M., and Kohl, K. D. (1990). "Interrill erodibility: collection and analysis of data from cropland soils." Transactions of the ASAE, Vol. 33, No. 6, pp. 1882-1888. https://doi.org/10.13031/2013.31553
  25. Mati, B. M. (1994). "Splash transport of soil on a slope under various crop covers." Agricultural Water Management, Vol. 26, No. 1-2, pp. 59-66. https://doi.org/10.1016/0378-3774(94)90024-8
  26. McIsaac, G. F. (1990). "Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy." Journal of Soil and Water Conservation, Vol. 45, No. 6, pp. 663-666.
  27. Morgan, R. P. C. (1978). Recherches sur l'erosion des sols sableux en Bedfordshire, Angleterre. Paper presented to colloquium on Agricultural Soil Erosion in Temperate Non-Mediterranean Climates, l'Universite Louis Pasteur, Strasbourg.
  28. Morgan, R. P. C. (1986). Soil erosion and conservation. Longman, Harlow.
  29. Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., and Styczen, M. E. (1998). "The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments." Earth Surface Processes and Landforms, Vol. 23, No. 6, pp. 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
  30. Morgan, R. P. D (1980) "Field studies of sediment transport by overland flow." Earth Surface Processes, Vol. 5, No. 4, pp. 307-316. https://doi.org/10.1002/esp.3760050403
  31. Moss, A. J., Walker, P. H., and Hutka, J., (1979). "Raindrop-simulated transportation in shallow water flows: an experimental study." Sedimentary Geology, Vol. 22, No. 3-4, pp. 165-184. https://doi.org/10.1016/0037-0738(79)90051-4
  32. Nam, M. J., Park, S. D., Lee, S. K. and Shin, S. S. (2015). "Interaction between raindrops splash and sheet flow in interrill erosion of steep hillslopes." J. Korea Water Resour. Assoc., Vol. 48, No. 7, pp. 595-604. https://doi.org/10.3741/JKWRA.2015.48.7.595
  33. Nearing, M. A., Wei, H., Stone, J. J., Pierson, F. B., Spaeth, K. E., Weltz, M. A., Flanagan, D. C., and Hernandez, M. (2011). "A rangeland hydrology and erosion model." Transactions of the ASABE, Vol. 54, No. 3, pp. 1-8.
  34. Palmer, R. S. (1964). "The influence of a thin water layer on water-drop impact forces. International Association of Science of Hydrology." Publication 65, General Assembly, Berkeley.
  35. Park, S. D., Lee, K. S., and Shin, S. S. (2012). "Statistical soil erosion model for burnt mountain areas in Korea - RUSLE approach." Journal of Hydrologic Engineering, ASCE, Vol. 17, No. 2, pp. 292-304. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000441
  36. Pearce, A. J. (1976). "Magnitude and frequency of erosion by Hortonian overland flow." Journal of Geology, Vol. 84, No. 1, pp. 65-80. https://doi.org/10.1086/628174
  37. Pierson, F. B., Robichaud, P. R., Moffet, C. A., and Spaeth, K. E. (2008). "Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape." Hyrological Processes, Vol. 22, pp. 2916-2929. https://doi.org/10.1002/hyp.6904
  38. Proffitt, A. P. B., and Rose, C. W. (1991). "Soil erosion processes. I. The relative importance of rainfall detachment and runoff entrainment." Aust. J. Soil Res., Vol. 29, pp. 671-683. https://doi.org/10.1071/SR9910671
  39. Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C. (1997). "Prediction soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)", USDA Agricultural Handbook No. 703. USDA, Washington, DC.
  40. Rosewell, C. J. (1986). "Rainfall kinetic energy in eastern australia." Journal of Climate and Applied Meteorology, Vol. 25, No. 11, pp. 1965-1971.
  41. Salles, C., Poesen, J., and Sempere-Torres, D. (2002). "Kinetic energy of rain and its functional with intensity." Journal of Hydrology, Vol. 257, No. 1-4, pp. 256-270. https://doi.org/10.1016/S0022-1694(01)00555-8
  42. Schmidt, J. (1993). "Modeling long-term soil loss and landform change, in overland flow." Hydraulic and Erosion Mechanics, Edited by A. J. Parsons.
  43. Sempere-Torres, D., Salles, C., Creutin, J. D., and Delrieu, G. (1992). "Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms." Erosion and sediment transport monitoring programs in river basin, IASH, Publ. No. 210, pp. 115-124.
  44. Shakesby, R. A, and Doerr, S. H. (2006). "Wildfire as a hydrological and geomorphological agent." Earth-Science Reviews Vol. 74, No. 3-4, pp. 269-307. https://doi.org/10.1016/j.earscirev.2005.10.006
  45. Shin, S. S., Park, S. D., Cho, J. W., and Lee, K. S. (2008). "Effects of vegetaton recovery for surface runoff and soil erosion in burned mountains, Yangyang." Journal of Civil Engineering KSCE, Vol. 499, pp. 154-166.
  46. Shin, S. S., Park, S. D., and Lee, K. S. (2013). "Sediment and hydrological response to vegetation recovery following wildfire on hillslopes and the hollow of a small watershed." Journal of Hydrology, Vol. 499, pp. 154-166. https://doi.org/10.1016/j.jhydrol.2013.06.048
  47. Shin, S. S., Park, S. D., and Choi, B. K. (2016). "Universal power law for relationship between rainfall kinetic energy and rainfall intensity." Advances in Meteorology, Vol. 2016, pp. 1-11. doi: 10.1155/2016/2494681.
  48. Shin, S. S., Park, S. D., Hwang, Y. (2017). "Evaluation of effective energy for splash and sheet erosion on post-fire steep hillslopes." Proceedings 19th EGU General Assembly, Vienna, Austria, p. 11962
  49. Shin, S. S., Park, S. D., Pierson, F. B., Al-Hamdan, O. Z, and Williams, C. J. (2012). Rainfall and sheet power equation for interrill erosion on steep hillslope. AGU Fall Meeting ID: 1491578.
  50. Smith, J. A., and De Veaux, R. D. (1992). "The temporal and spatial variability of rainfall power." Environmetrics, Vol. 3, No. 1, pp. 29-53. https://doi.org/10.1002/env.3170030103
  51. Steiner, M., and Smith, J. A. (2000). "Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra." Journal of Applied Meteorology, Vol. 39, No. 11, pp. 1923-1940. https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2
  52. Torri, D., and Poesen, J. (1992). "The effect of soil surface slope on raindrop detachment." CATENA, Vol. 19, No. 6, pp. 561-577. https://doi.org/10.1016/0341-8162(92)90053-E
  53. Torri, D., Sfalanga M., and Del Sette, M. (1987). "Splash detachment: runoff depth and soil cohesion." CATENA, Vol. 14, No. 1-3, pp. 149-155. https://doi.org/10.1016/S0341-8162(87)80013-9
  54. Uijlenhoet, R., and Stricker, J. N. M. (1999). "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology, Vol. 218, No. 3-4, pp. 101-127. https://doi.org/10.1016/S0022-1694(99)00032-3
  55. Van Dijk, A. I. J. M, Bruijnzeel, L. A., and Rosewell, C. J. (2002) "Rainfall intensity-kinetic energy relationships: a critical literature review," Journal of Hydrology, Vol. 261, No. 1-4, pp. 1-23. https://doi.org/10.1016/S0022-1694(02)00020-3
  56. Wei, H., Nearing, M. A., Stone, J. J., Guertin, D. P., Spaeth, K. E., Pierson, F. B., Nichols, M. H., and Moffett, C. A. (2009) "A new splash and sheet erosion equation for rangelands." Soil and Water Management and Conservation, Vol. 73, No. 4, pp. 1386-1392.
  57. Wischmeier, W. H., and Smith, D. D. (1958). "Rainfall energy and its relationship to soil loss." Transactions of the American Geophysical Union. Vol. 39, No. 2, pp. 285-291. https://doi.org/10.1029/TR039i002p00285
  58. Wischmeier, W. H., and Smith, D. D. (1978). "Predicting rainfall erosion losses-a guide to conservation planning." Agriculture Handbook 537. US Department of Agriculture-Science and Education Administration, Washington DC.
  59. Wright, A. C. (1986). "A physically-based model of the dispersion of splash droplets ejected from a water drop impact." Earth Surface Processes and Landforms, Vol. 11, No. 4, pp. 351-367. https://doi.org/10.1002/esp.3290110402
  60. Yang C. T. (1972) "Unit stream power and sediment transport." Journal of the Hydraulics Division, ASCE, Vol. 98, No. 10, pp. 1805-1826.
  61. Zanchi, C., and Torri, D. (1980). "Evaluation of rainfall energy in central Italy." Edited by De Boodt, M., Gabriels, D. Assessment of Erosion, Wiley, Toronto, pp. 133-142.
  62. Zhang, X. C., Nearing, M. A., Miller, W. P., Norton, L. D., and West, L. T. (1998). "Modeling interrill sediment delivery." Soil Science Society of America Journal, Vol. 62, No. 2, pp. 438-444. https://doi.org/10.2136/sssaj1998.03615995006200020021x