DOI QR코드

DOI QR Code

직립호안에서 지진해일 파형이 월파와 침수에 미치는 영향

Effects of tsunami waveform on overtopping and inundation on a vertical seawall

  • 이우동 (경상대학교 해양토목공학과) ;
  • 김정욱 (경상대학교 해양토목공학과) ;
  • 박종률 (국립재난안전연구원 지진대책연구실) ;
  • 허동수 (경상대학교 해양토목공학과)
  • Lee, Woodong (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Kim, Jungouk (Department of Ocean Civil Engineering, Gyeongsang National University) ;
  • Park, Jongryul (Earthquake Hazard Research Division, National Disaster Management Research Institute) ;
  • Hur, Dongsoo (Department of Ocean Civil Engineering, Gyeongsang National University)
  • 투고 : 2018.04.10
  • 심사 : 2018.05.08
  • 발행 : 2018.08.31

초록

수치파동수조에서 안정적인 지진해일을 조파하기 위하여 2차원 수치모델(LES-WASS-2D)에 다양한 파형의 지진해일을 고려할 수 있는 무반사 조파시스템을 도입하였다. 기존 실험에서 측정한 호안주변의 지진해일의 시 공간 파형들과 비교하여 수치계산결과가 높은 정확도를 나타내었다. 이로써 본 연구에서 적용한 수치모델이 지진해일 월파모의에 있어서 적합하다는 것을 보여주었다. 지진해일 월파모의결과로부터 지진해일 체적비와 파고와 수심비에 따른 월퍄량, 침수거리를 고찰하였다. 지진해일의 파형이 넓을수록 월파량이 선형적으로 증가하였으며, 침수거리 또한 증가하였다. 그러므로 고립파 근사이론을 지진해일의 월파 및 침수모의에 적용할 경우, 실제 지진해일보다 수리특성이 과소평가 될 우려가 크다.

In order to generate the stable tsunami in a numerical wave tank, a two-dimensional numerical model, LES-WASS-2D has been introduced the non-reflected wave generation system for various tsunami waveforms. And then, comparing to existing experimental results it is revealed that computed results of the LES-WASS-2D are in good agreement with the experimental results on spatial and temporal tsunami waveforms in the vicinity of a seawall. It is shown that the applied model in this study is applicable to the numerical simulations on tsunami overtopping and inundation. Using the numerical results, the characteristics of overtopping and inundation on a seawall are also discussed with volume ratio of tsunami and relative tsunami height. The wider the tsunami waveform, tsunami overtopping quantity and inundation distances are linearly increased. Therefore, the hydraulic characteristics is highly likely to be underestimated against the real tsunami if the solitary wave of approximation theory is applied for the overtopping/inundation simulations due to a tsunami.

키워드

참고문헌

  1. Baldock, T. E., Peiris, D., and Hogg, A. J. (2012). "Overtopping of solitary waves and solitary bores on a plane beach." Proceedings Royal Society of London A: Mathematical and Physical Sciences, Vol. 468, No. 2147, pp. 3494-3516, doi: 10.1098/rspa.2011.0729.
  2. Bozorgnia, M., Eftekharian, A., and Lee, J. J. (2014). "CFD modeling of a solitary wave overtopping breakwater of varying submergence." Proceedings 34th International Conference on Coastal Engineering, ASCE, Seoul, Korea, doi: 10.9753/icce.v34.waves.7.
  3. Brackbill, J. U., Kothe, D. B., and Zemach, C. (1992). "A continuum model for modeling surface tension." Journal of Computational Physics, Vol. 100, No. 2, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  4. Brorsen, M., and Larsen, J. (1987). "Source generation of nonlinear gravity waves with the boundary integral equation method." Coastal Engineering, Vol. 11, No. 2, pp. 93-113. https://doi.org/10.1016/0378-3839(87)90001-9
  5. Chang, Y. H., Hwang, K. S., and Hwung, H. H. (2009). "Large-scale laboratory measurements of solitary wave inundation on a 1 : 20 slope." Coastal Engineering, Vol. 56, No. 10, pp. 1022-1034, doi: 10.1016/j.coastaleng.2009.06.008.
  6. Cho, Y. S., and Lee, H. J. (2002). "Numerical simulations of 1983 central east sea tsunami at Imwon: 1. propagation across the east sea." Journal of Korea Water Resources Association, Vol. 35, No. 4, pp. 443-452 (in Korean). https://doi.org/10.3741/JKWRA.2002.35.4.443
  7. Dean, R. G., and Dalrymple, R. A. (1984). Water wave mechanics for engineers and scientists. Prentice-Hall, Englewood Cliffs, New Jersey.
  8. Goseberg, N. (2012). "A laboratory perspective of long wave generation." Proceedings 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, Vol. 3, pp. 54-60.
  9. Ha, T., Jung, W., and Cho, Y. S. (2012). "Numerical study on reduced runup heights of solitary wave by submerged structures." Journal of the Korean Society of Hazard Mitigation, Vol. 12, No. 5, pp. 251-258 (in Korean). https://doi.org/10.9798/KOSHAM.2012.12.5.251
  10. Ha, T., Kim, H. J., and Cho, Y. S. (2010). "Numerical simulation of solitary wave run-up with an internal wave-maker of Navier-Stokes equations model." Journal of Korea Water Resources Association, Vol. 43, No. 9, pp. 801-811 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.9.801
  11. Hirt, C. W., and Nichols, B. D. (1981). "Volume of fluid (VOF) method for the dynamics of free boundaries." Journal of Computational Physics, Vol. 39, No. 1, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  12. Hunt, A. (2003). Extreme waves, overtopping and flooding at sea defences. Ph. D. thesis, University of Oxford, the United Kingdom, p. 255.
  13. Hunt-Raby, A. C., Borthwick, A. G. L., Stansby, P. K., and Taylor, P. H. (2011). "Experimental measurement of focused wave group and solitary wave overtopping." Journal of Hydraulic Research, Vol. 49, No. 4, pp. 450-464. doi: 10.1080/00221686.2010.542616.
  14. Hur, D. S., Lee, K. H., and Choi, D. S. (2011). "Effect of the slope gradient of submerged breakwaters on wave energy dissipation." Engineering Applications of Computational Fluid Mechanics, Vol. 5, No. 1, pp. 83-98. https://doi.org/10.1080/19942060.2011.11015354
  15. Hur, D. S., Lee, W. D., and Jang, B. J. (2015). "A numerical simulation on delay time of tsunami propagation due to permeable submerged breakwater." Journal of Korean Society of Coastal Disaster Prevention, Vol. 2, No. 4, pp. 197-205 (in Korean).
  16. Kang, S, Park, J., and Jang, T. S. (2017). "Numerical simulation of one-dimensional Madsen-Sorensen extended Boussinesq equations using Crowhurst-Zhenquan scheme." Journal of Ocean Engineering and Technology, Vol. 31, No. 5, pp. 346-351 (in Korean). https://doi.org/10.26748/KSOE.2017.10.31.5.346
  17. Kim, D. S., Kim, J. M., and Lee, K. H. (2007b). "Numerical simulation of tsunamis that affected the coastal zone of east sea." Journal of Ocean Engineering and Technology, Vol. 21, No. 6, pp. 72-80 (in Korean).
  18. Kim, D. S., Kim, J. M., Lee, K. H., and Son, H. K. (2007a). "Analysis of the effects on the southeastern coast of Korea by a tsunami originating from hypothetical earthquake in Japan." Journal of Ocean Engineering and Technology, Vol. 21, No. 6, pp. 64-71 (in Korean).
  19. Kim, H. S., Kim, H. S., and Kang, Y. S. (2008). "The simulation of tsunami against the south coast of the Korean peninsula." Journal of Ocean Engineering and Technology, Vol. 22, No. 5, pp. 31-38 (in Korean).
  20. Lee, H. H., Cho, H. R., and Cho, Y. S. (2016a). "Tsunami inundation map due to fault sources at Ryuku trench." Journal of the Korean Society of Hazard Mitigation, Vol. 16, No. 1, pp. 319-328 (in Korean). https://doi.org/10.9798/KOSHAM.2016.16.1.319
  21. Lee, W. D., Hur, D. S., and Goo, N. H. (2014). "A numerical study on tsunami run-up heights on impermeable/permeable slope." Journal of Korean Society of Coastal Disaster Prevention, Vol. 1, No. 1, pp. 1-9 (in Korean).
  22. Lee, W. D., Hur, D. S., Kim, H. S., and Jo, H. J. (2016c). "Self-burial structure of the pipeline with a spoiler on seabed." Journal of Ocean Engineering and Technology, Vol. 30, No. 4, pp. 310-319 (in Korean). https://doi.org/10.5574/KSOE.2016.30.4.310
  23. Lee, W. D., Lee, J. C., Jin, D. H., and Hur, D. S. (2016d). "Numerical simulation of local scour in front of impermeable submerged breakwater using 2-d coupled hydro-morphodynamic model." Journal of Ocean Engineering and Technology, Vol. 30, No. 6, pp. 484-497 (in Korean). https://doi.org/10.5574/KSOE.2016.30.6.484
  24. Lee, W. D., Park, J. R., Jeon, H. S., and Hur, D. S. (2016b). "A study on stable generation of tsunami in hydraulic/numerical wave tank." Journal of the Korean Society of Civil Engineers, Vol. 36, No. 5, pp. 805-817 (in Korean). https://doi.org/10.12652/Ksce.2016.36.5.0805
  25. Lee, W. D., Park, J. R., Jeon, H. S., and Hur, D. S. (2017). "Effects of tsunami waveform on energy dissipation of aquatic vegetation." Journal of Ocean Engineering and Technology, Vol. 31, No. 2, pp. 121-129 (in Korean). https://doi.org/10.5574/KSOE.2017.31.2.121
  26. Lin, P., Chang K. A., Liu, P. L.-F (1999). "Runup and rundown of solitary waves on sloping beaches." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 125, No. 5, pp. 247-255. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:5(247)
  27. Liu, H., Sakashita, T., and Sato, S. (2014). "An experimental study on the tsunami boulder movement." Proceedings 34th International Conference on Coastal Engineering, ASCE, Seoul, Korea, doi: 10.9753/icce.v34.currents.16.
  28. Liu, P. L.-F., Simarro, G., Vandever, J., and Orfila, A. (2006). "Experimental and numerical investigation of viscous effects on solitary wave propagation in a wave tank." Coastal Engineering, Vol. 53, No. 2-3, pp. 181-190. https://doi.org/10.1016/j.coastaleng.2005.10.008
  29. Nouri, Y., Nistor, I., and Palermo, D. (2010). "Experimental investigation of tsunami impact on free standing structures." Coastal Engineering Journal, Vol. 52, No. 1, pp. 43-70. https://doi.org/10.1142/S0578563410002117
  30. Ohyama, T., and Nadaoka, K. (1991). "Development of a numerical wave tank for analysis of non-linear and irregular wave field." Fluid Dynamics Research, Vol. 8, No. 5-6, pp. 231-251. https://doi.org/10.1016/0169-5983(91)90045-K
  31. Park, H. S., Cox, T. D., Lynett, P. J., Wiebe, D. M., and Shin, S. W. (2013). "Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux." Coastal Engineering, Vol. 79, pp. 9-21. https://doi.org/10.1016/j.coastaleng.2013.04.002
  32. Park, J. I., Park, J. C., Hwang, S. C., and Heo, J. K. (2014). "Two-dimensional particle simulation for behaviors of floating body near quaywall during tsunami." Journal of Ocean Engineering and Technology, Vol. 28, No. 1, pp. 12-19 (in Korean). https://doi.org/10.5574/KSOE.2014.28.1.012
  33. Qu, K., Ren, X. Y., and Kraatz, S. (2017). "Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave." Applied Ocean Research, Vol. 63, pp. 36-48. https://doi.org/10.1016/j.apor.2017.01.003
  34. Rossetto, T., Allsop, W., Charvet, I., and Robinson, D. (2011). "Physical modelling of tsunami using a new pneumatic wave generator." Coastal Engineering, Vol. 58, No. 6, pp. 517-527. https://doi.org/10.1016/j.coastaleng.2011.01.012
  35. Suppasri, A., Koshimura, S., Imai, K., Mas, E., Gokon, H., Muhari, A., and Imamura, F. (2012). "Field survey and damage characteristic of the 2011 Tohoku tsunami in Miyagi prefecture." Coastal Engineering Journal, Vol. 54, No. 1, 1250005. doi: 10.1142/S0578563412500052.