DOI QR코드

DOI QR Code

CMIP5 GCM의 동아시아 해안지역에 대한 공간적 강우특성 재현성 평가

Assessing the skills of CMIP5 GCMs in reproducing spatial climatology of precipitation over the coastal area in East Asia

  • 황세운 (경상대학교 지역환경기반공학과) ;
  • 조재필 (APEC기후센터) ;
  • 윤광식 (전남대학교 지역.바이오시스템공학과)
  • Hwang, Syewoon (Department of Agricultural Engineering, Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Cho, Jeapil (APEC Climate Center) ;
  • Yoon, Kwang Sik (Department of Rural and Biosystems Engineering, Chonnam National University)
  • 투고 : 2018.03.16
  • 심사 : 2018.04.18
  • 발행 : 2018.08.31

초록

기후변화에 따른 강우특성의 변화 등 다양한 기상이변과 극한사상에 관련된 수자원 연구는 일반적으로 전지구 기후 모델(General Circulation Model, GCM) 산출물에 기반하여 생산된 미래 기상정보를 바탕으로 이루어진다. 사회 다양한 분야에서 기후변화 영향평가가 심층적으로 이루어지고 있는 가운데 과거기간에 대한 원시 모의결과 평가를 통한 GCM의 성능과 산출물에 대한 재현성 고찰 연구는 상대적으로 미흡한 실정이다. 본 연구에서는 한반도 지역에 대한 전지구 모델의 성능을 평가하기 위해 동아시아 지역의 격자단위 관측자료를 수집하여 과거기간(1970~2005)에 대한 강우특성 공간분포를 분석하고 이에 대한 GCM 산출물의 재현성을 평가하였다. 위도와 경도에 따른 강우특성의 공간적 변동성에 대한 GCM 결과의 상관성과 평균/절대오차를 산정하여 29개 CMIP5 GCM의 순위를 결정하여 제시하였다. 연구 결과 오차 통계와 대상지역에 따라 GCM 순위가 상이하게 나타났으며 특히 공간분포의 패턴과 절대적 오차를 기준으로 판단한 GCM 순위가 크게 다르게 나타났다. 대체로 Hadley Centre 계열 모델의 동아시아 지역에 대한 강우특성 재현성이 높게 나타났으며 한반도 지역만을 대상으로 평가한 경우 MPI_ESM_MR과 CMCC center 계열 모델의 재현성이 높게 나타났다. 본 연구결과는 향후 한반도 지역의 기후변화 영향평가에 가중있게 고려되어야 할 GCM의 선정과 GCM 성능고려에 따른 기후변화 예측 불확실성 평가에 적용될 수 있으며 다양한 영향 평가 연구결과의 신뢰도 제고에 기여할 것으로 기대된다.

Future variability of the spatial patterns of rainfall events is the point of water-related risks and impacts of climate change. Recent related researches are mostly conducted based on the outcomes from General Circulation Models (GCMs), especially Coupled Model Intercomparison Project, phase 5 (CMIP5) GCMs which are the most advanced version of climate modeling system. GCM data have been widely used for various studies as the data utility keep getting improved. Meanwhile the model performances especially for raw GCM outputs are rarely evaluated prior to the applications although the process would essential for reasonable use of model forecasts. This study attempt to quantitatively evaluate the skills of 29 CMIP5 GCMs in reproducing spatial climatologies of precipitation in East Asia. We used 3 different gridded observational data as the references available over the study area and calculated correlation and errors of spatial patterns simulated by GCMs. As a result, the study presented diversity of the GCM evaluation in the performance, rank, or accuracy by different configurations, such as target area, evaluation method, and observation data. Yet, we found that Hadley-centre affiliated models comparatively performs better for the meso-scale area in East Asia and MPI_ESM_MR and CMCC family showed better performance specifically for the korean peninsula. We expect that the results and thoughts of this study would be considered in screening suitable GCMs for specific area, and finally contribute to extensive utilization of the results from climate change related researches.

키워드

참고문헌

  1. Ashouri H., Hsu, K., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and O. P. Prat (2015). "PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies." Bulletin of the American Meteorological Society, Vol. 96, No. 1, pp. 69-83. https://doi.org/10.1175/BAMS-D-13-00068.1
  2. Beven, J. K. (2001). Rainfall-runoff modeling. The primer, John Wiley & Sons Ltd., England, pp. 285-287.
  3. Demirel, M. C., and Moradkhani, H. (2016). "Assessing the impact of CMIP5 climate multi-modeling on estimating the precipitation seasonality and timing." Climatic Change, Vol. 132, No. 2, pp. 357-372
  4. Gleckler, P. J., Taylor, K. E., and Doutriaux, C. (2008). "Performance metrics for climate model." Journal of Geophysical Research, Vol. 113, D6104, doi: 10.1029/2007JD008972.
  5. Gomez-Navarro, J. J., Montavez, J. P., Jerez, S., Jimenez-Guerrero, P., and Zorita, E. (2012). "What is the role of the observational dataset in the evaluation and scoring of climate models?" Geophysical Research Letters, Vol. 39, No. 24, pp. L24701, doi: 10.1029/2012GL054206.
  6. Hwang, S. (2012). "Utility of gridded observations for statistical bias-correction of climate model outputs and its hydrologic implication over west central Florida." Journal of the Korean Society of Agricultural Engineers, Vol. 54, No. 5, pp. 91-102. https://doi.org/10.5389/KSAE.2012.54.5.091
  7. Hwang, S., and Graham, W. D. (2011). "Quantitative spatiotemporal evaluation of dynamically downscaled MM5 precipitation predictions over the Tampa bay region, Florida." Journal of Hydrometeorology, Vol. 12, No. 6, pp. 1447-1464. https://doi.org/10.1175/2011JHM1309.1
  8. Hwang, S., Graham, W. D., Geurink, J. S., and Alison, A. (2014). "Hydrologic implications of errors in bias-corrected regional reanalysis data for west central Florida." Journal of Hydrology, Vol. 510, pp. 513-529. https://doi.org/10.1016/j.jhydrol.2013.11.042
  9. Kwon, S.-H., Boo, K.-O., Shim, S., and Byun, Y.-H. (2017). "Evaluation of the east Asian summer monsoon season simulated in CMIP5 models and the future change." Atmosphere. Korean Meteorological Society, Vol. 27, No. 2, pp. 133-150.
  10. Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B. (2002). "A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States." Journal of Climate, Vol. 15, No. 22, pp. 3237-3251. https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
  11. Milly, P. C., Betancourt, D. J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). "Stationarity is dead-whither water management?" Science, Vol. 319, No. 5863, pp. 573-574. https://doi.org/10.1126/science.1151915
  12. Palutikof, J. P., Winkler, J. A., Goodess, C. M., and Andresen, J. A. (1997). "The simulation of daily temperature time series from GCM output. Part 1: comparison of model data with observations." Journal of Climate, Vol. 10, pp. 2497-2513. https://doi.org/10.1175/1520-0442(1997)010<2497:TSODTT>2.0.CO;2
  13. Radic, V., and Clarke, K. C. G. (2011). "Evaluation of IPCC models' performance in simulating late-twentieth-century climatologies and weather patterns over North America." Journal of Climate, Vol. 24, pp. 5257-5274 https://doi.org/10.1175/JCLI-D-11-00011.1
  14. Seo, Y.-W., Kim, H., Yun, K.-S., Lee, J.-Y., Ha, K.-J., and Moon, J.-Y. (2014). "Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5." Asia-Pacific Journal of Atmospheric Sciences, Vol. 50, pp. 609-624, doi: 10.1007/s13143-014-0050-5.
  15. Temba, N., and Chung, S.-O. (2014). "Uncertainty of Hydro-meteorological predictions due to climate change in the republic of Korea." Journal of Korea Water Resources Association, Vol. 47, No. 3, pp. 257-267. https://doi.org/10.3741/JKWRA.2014.47.3.257
  16. Yatagai, A. (2012). "APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges." Bulletin of American Meteorological Society, Vol. 93, pp. 1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1
  17. Yoo, S.-H., Kim, T., Lee, S.-H., and Choi, J.-Y. (2015). "Trend analysis of projected climate data based on CMIP5 GCMs for climate change impact assessment on agricultural water resources." Journal of The Korean Society of Agricultural Engineers, Vol. 57, No. 5, pp. 69-80. https://doi.org/10.5389/KSAE.2015.57.5.069