References
- Alanis AJ. 2005. Resistance to antibiotics: are we in the postantibiotic era? Arch. Med. Res. 36: 697-705. https://doi.org/10.1016/j.arcmed.2005.06.009
- Fauci AS. 1999. The AIDS epidemic - considerations for the 21st century. N. Engl. J. Med. 341: 1046-1050. https://doi.org/10.1056/NEJM199909303411406
- Kahn JO, Walker BD. 1998. Acute human immunodeficiency virus type 1 infection. N. Engl. J. Med. 339: 33-39. https://doi.org/10.1056/NEJM199807023390107
- Stone A. 2002. Microbicides: a new approach to preventing HIV and other sexually transmitted infections. Nat. Rev. Drug Discov. 1: 977-985. https://doi.org/10.1038/nrd959
- Balzarini J, Van Damme L. 2007. Microbicide drug candidates to prevent HIV infection. Lancet 369: 787-797. https://doi.org/10.1016/S0140-6736(07)60202-5
- Neu HC. 1992. The crisis in antibiotic resistance. Science 257: 1064-1073. https://doi.org/10.1126/science.257.5073.1064
- Bonnemann H, Richards RM. 2001. Nanoscopic metal particles − synthetic methods and potential applications. Eur. J. Inorg. Chem. 2001: 2455-2480. https://doi.org/10.1002/1099-0682(200109)2001:10<2455::AID-EJIC2455>3.0.CO;2-Z
- Hirsch LR, Stafford R, Bankson J, Sershen S, Rivera B, Price R, et al. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100: 13549-13554. https://doi.org/10.1073/pnas.2232479100
- Liau S, Read D, Pugh W, Furr J, Russell A. 1997. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279-283. https://doi.org/10.1046/j.1472-765X.1997.00219.x
- Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakawa S, Watanabe J. 2004. Synthesis and structural characterization of silver(I), aluminium(III) and cobalt(II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy biological activities. Action of silver(I)-oxygen bonding complexes on the antimicrobial activities. J. Inorg. Biochem. 98: 46-60. https://doi.org/10.1016/j.jinorgbio.2003.07.002
- Gupta A, Silver S. 1998. Molecular genetics: silver as a biocide: will resistance become a problem? Nat. Biotechnol. 16: 888. https://doi.org/10.1038/nbt1098-888
- Fedlheim DL, Foss CA. 2001. Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, Boca Raton, FL.
- Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916-924. https://doi.org/10.1021/pr0504079
- Das R, Gang S, Nath SS. 2011. Preparation and antibacterial activity of silver nanoparticles. J. Biomater. Nanobiotechnol. 2: 472-475. https://doi.org/10.4236/jbnb.2011.24057
- Li C, Wang X, Chen F, Zhang C, Zhi X, Wang K, et al. 2013. The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34: 3882-3890. https://doi.org/10.1016/j.biomaterials.2013.02.001
- Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, et al. 2005. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3: 1-10. https://doi.org/10.1186/1477-3155-3-1
- Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. 2009. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug. Chem. 20: 1497-1502. https://doi.org/10.1021/bc900215b
- AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. 2008. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3: 279-290.
- Zhang YQ. 2002. Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 20: 91-100. https://doi.org/10.1016/S0734-9750(02)00003-4
- Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M, et al. 2005. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J. Virol. 79: 10108-10125. https://doi.org/10.1128/JVI.79.16.10108-10125.2005
- Johnson V, Byington R, Aldovani A, Walker B. 1990. Infectivity assay (virus yield assay), pp. 71-76. In Aldovani A and Walker BD (eds.), Techniques in HIV research. Stockton Press, New York, NY.
- Pan H, Zhang Y, He G-X, Katagori N, Chen H. 2014. A comparison of conventional methods for the quantification of bacterial cells after exposure to metal oxide nanoparticles. BMC Microbiol. 14: 222. https://doi.org/10.1186/s12866-014-0222-6
- Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
- Ravichandran R. 2009. Nanotechnology-based drug delivery systems. Nanobiotechnology 5: 17-33. https://doi.org/10.1007/s12030-009-9028-2
- Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. 2011. Silver nanoparticles as potential antiviral agents. Molecules 16: 8894-8918. https://doi.org/10.3390/molecules16108894
Cited by
- Limitations of Recent Studies Dealing with the Antibacterial Properties of Silver Nanoparticles: Fact and Opinion vol.9, pp.12, 2018, https://doi.org/10.3390/nano9121775
- Synthesis of sericin-conjugated silver nanoparticles and their potential antimicrobial activity vol.60, pp.5, 2020, https://doi.org/10.1002/jobm.201900567
- Sericin: A Versatile Protein Biopolymer with Therapeutic Significance vol.26, pp.None, 2018, https://doi.org/10.2174/1381612826666200612165253
- Sericin based nanoformulations: a comprehensive review on molecular mechanisms of interaction with organisms to biological applications vol.19, pp.1, 2021, https://doi.org/10.1186/s12951-021-00774-y