References
- Uppada V, Bhaduri S, Noronha SB. 2014. Cofactor regeneration; an important aspect of biocatalysis. Curr. Sci. 106: 946-957.
- Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J. 2017. Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2: 621-654. https://doi.org/10.1016/j.chempr.2017.04.009
- Stewart JD. 2001. Dehydrogenases and transaminases in asymmetric synthesis. Curr. Opin. Chem. Biol. 5: 120-129. https://doi.org/10.1016/S1367-5931(00)00180-0
- Li Z, van Beilen JB, Duetz WA, Schmid A, de Raadt A, Griengl H, et al. 2002. Oxidative biotransformations using oxygenases. Curr. Opin. Chem. Biol. 6: 136-144. https://doi.org/10.1016/S1367-5931(02)00296-X
- Hummel W, Kula MR. 1989. Dehydrogenases for the synthesis of chiral compounds. Eur. J. Biochem. 184: 1-13. https://doi.org/10.1111/j.1432-1033.1989.tb14983.x
- van der Donk WA, Zhao H. 2003. Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol. 14: 421-426. https://doi.org/10.1016/S0958-1669(03)00094-6
- Wichmann R, Vasic-Racki D. 2005. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol. 92: 225-260.
- Tishkov VI, Popov VO. 2006. Protein engineering of formate dehydrogenase. Biomol. Eng. 23: 89-110. https://doi.org/10.1016/j.bioeng.2006.02.003
- Schubert T, Hummel W, Muller M. 2002. Highly enantioselective preparation of multifunctionalized propargylic building blocks. Angew. Chem. Int. Ed. 41: 634-637. https://doi.org/10.1002/1521-3773(20020215)41:4<634::AID-ANIE634>3.0.CO;2-U
- Wong C-H, Whitesides GM. 1981. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890-4899. https://doi.org/10.1021/ja00406a037
- Kataoka M , Sri Rohani L P, Wada M, Kita K, Yanase H , Urabe I, et al. 1998. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system. Biosci. Biotechnol. Biochem. 62: 167-169. https://doi.org/10.1271/bbb.62.167
- Costas AM, White AK, Metcalf WW. 2001. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88. J. Biol. Chem. 276: 17429-17436. https://doi.org/10.1074/jbc.M011764200
- Johannes TW, Woodyer RD, Zhao H. 2007. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol. Bioeng. 96: 18-26. https://doi.org/10.1002/bit.21168
- Choi KO, Song SH, Yoo YJ. 2004. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioproc. Eng. 9: 147-150. https://doi.org/10.1007/BF02942284
- Sakasegawa S, Hagemeier CH, Thauer RK, Essen LO, Shima S. 2004. Structural and functional analysis of the gpsA gene product of Archaeoglobus fulgidus: a glycerol-3-phosphate dehydrogenase with an unusual NADP+ preference. Protein Sci. 13: 3161-3171.
- Rahmat N, Abdullah AZ, Mohamed AR. 2010. Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew. Sust. Energy Rev. 14: 987-1000. https://doi.org/10.1016/j.rser.2009.11.010
- da Silva GP, Mack M, Contiero J. 2009. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27: 30-39. https://doi.org/10.1016/j.biotechadv.2008.07.006
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
- Oguri S, Watanabe K, Nozu A, Kamiya A. 2007. Screening of D-amino acid oxidase inhibitor by a new multi-assay method. Food Chem. 100: 616-622. https://doi.org/10.1016/j.foodchem.2005.09.076
Cited by
- Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis vol.103, pp.13, 2019, https://doi.org/10.1007/s00253-019-09829-5
- Sustainable biosynthesis of chemicals from methane and glycerol via reconstruction of multi‐carbon utilizing pathway in obligate methanotrophic bacteria vol.14, pp.6, 2018, https://doi.org/10.1111/1751-7915.13809
- Kinetic modelling of 2,3-butanediol production by Raoultella terrigena CECT 4519 resting cells: Effect of fluid dynamics conditions and initial glycerol concentration vol.176, pp.None, 2018, https://doi.org/10.1016/j.bej.2021.108185