DOI QR코드

DOI QR Code

Dietary Supplementation with Raspberry Extracts Modifies the Fecal Microbiota in Obese Diabetic db/db Mice

  • Garcia-Mazcorro, Jose F. (Research and Development, MNA de Mexico) ;
  • Pedreschi, Romina (School of Agronomy, Pontificia Universidad Catolica de Valparaiso) ;
  • Chew, Boon (Department of Nutrition and Food Science, Texas A&M University) ;
  • Dowd, Scot E. (Molecular Research LP) ;
  • Kawas, Jorge R. (Faculty of Agronomy, Universidad Autonoma de Nuevo Leon) ;
  • Noratto, Giuliana (Department of Nutrition and Food Science, Texas A&M University)
  • Received : 2018.03.15
  • Accepted : 2018.05.24
  • Published : 2018.08.28

Abstract

Raspberries are polyphenol-rich fruits with the potential to reduce the severity of the clinical signs associated with obesity, a phenomenon that may be related to changes in the gut microbiota. The aim of this study was to investigate the effect of raspberry supplementation on the fecal microbiota using an in vivo model of obesity. Obese diabetic db/db mice were used in this study and assigned to two experimental groups (with and without raspberry supplementation). Fecal samples were collected at the end of the supplementation period (8 weeks) and used for bacterial 16S rRNA gene profiling using a MiSeq instrument (Illumina). QIIME 1.8 was used to analyze the 16S data. Raspberry supplementation was associated with an increased abundance of Lachnospiraceae (p = 0.009), a very important group for gut health, and decreased abundances of Lactobacillus, Odoribacter, and the fiber degrader S24-7 family as well as unknown groups of Bacteroidales and Enterobacteriaceae (p < 0.05). These changes were enough to clearly differentiate bacterial communities accordingly to treatment, based on the analysis of UniFrac distance metrics. However, a predictive approach of functional profiles showed no difference between the treatment groups. Fecal metabolomic analysis provided critical information regarding the raspberry-supplemented group, whose relatively higher phytosterol concentrations may be relevant for the host health, considering the proven health benefits of these phytochemicals. Further studies are needed to investigate whether the observed differences in microbial communities (e.g., Lachnospiraceae) or metabolites relate to clinically significant differences that can prompt the use of raspberry extracts to help patients with obesity.

Keywords

References

  1. Zukiewicz-Sobczak W, Wroblewska P, Zwolinski J, Chmielewska-Badora J, Adamczuk P, Krasowska E, et al. 2014. Obesity and poverty paradox in developed countries. Ann. Agric. Environ. Med. 21: 590-594. https://doi.org/10.5604/12321966.1120608
  2. Smith KB, Smith MS. 2016. Obesity statistics. Prim. Care 43: 121-135. https://doi.org/10.1016/j.pop.2015.10.001
  3. Spieker EA, Pyzocha N. 2016. Economic impact of obesity. Prim. Care 43: 83-95. https://doi.org/10.1016/j.pop.2015.08.013
  4. Subhan FB, Chan CB. 2016. Review of dietary practices of the 21st century: facts and fallacies. Can. J. Diabetes 40: 348-354. https://doi.org/10.1016/j.jcjd.2016.05.005
  5. Clemente JC, Ursell LK, Wegener Parfrey L, Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258-1270. https://doi.org/10.1016/j.cell.2012.01.035
  6. Dinan TG, Cryan JF. 2016. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology 42: 178-192.
  7. Hill DA, Artis D. 2010. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. 28: 623-667. https://doi.org/10.1146/annurev-immunol-030409-101330
  8. Harakeh SM, Khan I, Kumosani T, Barbour E, Almasaudi SB, Bahijri SM, et al. 2016. Gut microbiota: a contributing factor to obesity. Front. Cell. Infect. Microbiol. 6: 95.
  9. Heiman ML, Greenway FL. 2016. A healthy gastrointestinal microbiome is dependent on dietary diversity. Mol. Metab. 5: 317-320. https://doi.org/10.1016/j.molmet.2016.02.005
  10. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108. https://doi.org/10.1126/science.1208344
  11. Piotr Mazur S, Nes A, Wold AB, Fagertun Remberg S, Aaby K. 2014. Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chem. 160: 233-240. https://doi.org/10.1016/j.foodchem.2014.02.174
  12. Burton-Freeman BM, Sandhu AK, Edirisinghe I. 2016. Red raspberries and their bioactive polyphenols: cardiometabolic and neuronal health links. Adv. Nutr. 7: 44-65. https://doi.org/10.3945/an.115.009639
  13. McDougall GJ, Stewart D. 2005. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 23: 189-195. https://doi.org/10.1002/biof.5520230403
  14. Noratto GD, Chew BP, Atienza LM. 2017. Red raspberry (Rubus ideaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice. Food Chem. 227: 305-314. https://doi.org/10.1016/j.foodchem.2017.01.097
  15. Overall J, Bonney SA, Wilson M, Beermann A, Grace MH, Esposito D, et al. 2017. Metabolic effects of berries with structurally diverse anthocyanins. Int. J. Mol. Sci. 18: E422. https://doi.org/10.3390/ijms18020422
  16. Nowak A, Sojka M, Klewicka E, Lipinska L, Klewicki R, Kolodziejczyk K. 2017. Ellagitannins from Rubus idaeus L. exert geno- and cytotoxic effects against human colon adenocarcinoma cell line Caco-2. J. Agric. Food Chem. DOI: 10.1021/acs.jafc.6b05387.
  17. Fotschki B, Juskiewicz J, Jurgonski A, Rigby N, Sojka M, Kolodziejczyk K, et al. 2017. Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat diet. J. Nutr. Biochem. 46: 13-20. https://doi.org/10.1016/j.jnutbio.2017.03.004
  18. Viladomiu M, Hontecillas R, Lu P, Bassaganya-Riera J. 2013. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evid. Based Complement. Alternat. Med. 2013: 789764.
  19. Zou X, Yan C, Shi Y, Cao K, Xu J, Wang X, et al. 2014. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin. Antioxid. Redox Signal. 21: 1557-1570. https://doi.org/10.1089/ars.2013.5538
  20. Medjakovic S, Jungbauer A. 2013. Pomegranate: a fruit that ameliorates metabolic syndrome. Food Funct. 4: 19-39. https://doi.org/10.1039/C2FO30034F
  21. Heber D, Seeram NP, Wyatt H, Henning SM, Zhang Y, Ogden LG, et al. 2007. Safety and antioxidant activity of a pomegranate ellagitannin-enriched polyphenol dietary supplement in overweight individuals with increased waist size. J. Agric. Food Chem. 55: 10050-10054. https://doi.org/10.1021/jf071689v
  22. Tomas-Barberan FA, Selma MV, Espin JC. 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 19: 471-476. https://doi.org/10.1097/MCO.0000000000000314
  23. Noratto GD, Garcia-Mazcorro JF, Markel M, Martino HS, Minamoto Y, Steiner JM, et al. 2014. Carbohydrate-free peach (Prunus persica) and plum (Prunus domestica) juice affects fecal microbial ecology in an obese animal model. PLoS One 9: e101723. https://doi.org/10.1371/journal.pone.0101723
  24. Lee HC, Jenner AM, Low CS, Lee YK. 2006. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res. Microbiol. 157: 876-884. https://doi.org/10.1016/j.resmic.2006.07.004
  25. Parkar SG, Stevenson DE, Skinner MA. 2008. The potential influence of fruit polyphenols on colonic microflora and human gut health. Int. J. Food Microbiol. 124: 295-298. https://doi.org/10.1016/j.ijfoodmicro.2008.03.017
  26. Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. 2010. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 140: 175-182. https://doi.org/10.1016/j.ijfoodmicro.2010.03.038
  27. Bolca S, Van de Wiele T, Possemiers S. 2013. Gut metabotypes govern health effects of dietary polyphenols. Curr. Opin. Biotechnol. 24: 220-225. https://doi.org/10.1016/j.copbio.2012.09.009
  28. Garcia-Mazcorro JF, Mills DA, Noratto G. 2016. Molecular exploration of fecal microbiome in quinoa-supplemented obese mice. FEMS Microbiol. Ecol. 92: fiw089. https://doi.org/10.1093/femsec/fiw089
  29. Wang B, Chandrasekera PC, Pippin JJ. 2014. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr. Diabetes Rev. 10: 131-145. https://doi.org/10.2174/1573399810666140508121012
  30. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624. https://doi.org/10.1038/ismej.2012.8
  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
  32. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al. 2014. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2: e545. https://doi.org/10.7717/peerj.545
  33. Navas-Molina JA, Peralta-Sanchez JM, Gonzalez A, McMurdie PJ, Vazquez-Baeza Y, Xu Z, et al. 2013. Advancing our understanding of the human microbiome using QIIME. Methods Enzymol. 531: 371-444.
  34. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069-5072. https://doi.org/10.1128/AEM.03006-05
  35. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31: 814-821. https://doi.org/10.1038/nbt.2676
  36. Garcia-Mazcorro JF, Nunes Lage N, Mertens-Talcott S, Talcott S, Chew B, Dowd SE, et al. 2017. Effect of dark sweet cherry powder consumption on the gut microbiota, shortchain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 6: e4195.
  37. Hammer O, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4: 1-9.
  38. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60. https://doi.org/10.1186/gb-2011-12-6-r60
  39. Parks DH, Beiko RG. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26: 715-721. https://doi.org/10.1093/bioinformatics/btq041
  40. Xia J, Sinelnikov IV, Han B, Wishart DS. 2015. MetaboAnalyst 3.0 - making metabolomics more meaningful. Nucleic Acids Res. 43: W251-W257. https://doi.org/10.1093/nar/gkv380
  41. Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270.
  42. Garcia-Mazcorro JF, Castillo-Carranza SA, Guard B, Gomez-Vazquez JP, Dowd SE, Brightsmith DJ. 2017. Comprehensive molecular characterization of bacterial communities in feces of pet birds using 16S marker sequencing. Microb. Ecol. 73: 224-235. https://doi.org/10.1007/s00248-016-0840-7
  43. Saitoh S, Noda S, Aiba Y, Takagi A, Sakamoto M, Benno Y, Koga Y. 2002. Bacteroides ovatus as the predominant commensal intestinal microbe causing a systemic antibody response in inflammatory bowel disease. Clin. Diagn. Lab. Immunol. 9: 54-59.
  44. Sekelja M, Berget I, Næs T, Rudi K. 2011. Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach. ISME J. 5: 519-531. https://doi.org/10.1038/ismej.2010.129
  45. Worthlet DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, et al. 2009. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am. J. Clin. Nutr. 90: 578-586. https://doi.org/10.3945/ajcn.2009.28106
  46. Suchodolski JS. 2011. Companion animals symposium: microbes and gastrointestinal health of dogs and cats. J. Anim. Sci. 89: 1520-1530. https://doi.org/10.2527/jas.2010-3377
  47. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. 2012. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80: 3786-3794. https://doi.org/10.1128/IAI.00647-12
  48. Tun HM, Bridgman SL, Chari R, Field CJ, Guttman DS, Becker AB, et al. 2018. Roles of birth mode and infant gut microbiota in intergenerational transmission of overweight and obesity from mother to offspring. JAMA Pediatr. 172: 368-377. https://doi.org/10.1001/jamapediatrics.2017.5535
  49. de la Cuesta-Zuluaga J, Corrales-Agudelo V, Carmona JA, Abad JM, Escobar JS. 2018. Body size phenotypes comprehensively assess cardiometabolic risk and refine the association between obesity and gut microbiota. Int. J. Obes. (Lond.) 42: 424-432. https://doi.org/10.1038/ijo.2017.281
  50. Higashimura Y, Baba Y, Inoue R, Takagi T, Mizushima K, Ohnogi H, et al. 2017. Agaro-oligosaccharides regulate gut microbiota and adipose tissue accumulation in mice. J. Nutr. Sci. Vitaminol. (Tokyo) 63: 269-276. https://doi.org/10.3177/jnsv.63.269
  51. Tomas J, Mulet C, Saffarian A, Cavin JB, Ducroc JB, Regnault B, et al. 2016. High-fat diet modifies the PPAR-${\gamma}$ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA 113: E5934-E5943. https://doi.org/10.1073/pnas.1612559113
  52. Garcia-Mazcorro J F, Ivanov I, M ills D A, N oratto G . 2016. Influence of whole-wheat consumption on fecal microbial ecology of obese diabetic mice. PeerJ 4: e1702. https://doi.org/10.7717/peerj.1702
  53. Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H, et al. 2016. Role of the gut microbiome in modulating arthritis progression in mice. Sci. Rep. 6: 30594. https://doi.org/10.1038/srep30594
  54. Yao J, Carter RA, Vuagniaux G, Barbier M, Rosch JW, Rock CO. 2016. A pathogen-selective antibiotic minimizes disturbance to the microbiome. Antimicrob. Agents Chemother. 60: 4264-4273. https://doi.org/10.1128/AAC.00535-16
  55. Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. 2016. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 4: 36. https://doi.org/10.1186/s40168-016-0181-2
  56. Marangoni F, Poli A. 2010. Phytosterols and cardiovascular health. Pharmacol. Res. 61: 193-199. https://doi.org/10.1016/j.phrs.2010.01.001
  57. Li H, Cao Y. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39: 1107-1116. https://doi.org/10.1007/s00726-010-0582-7
  58. Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, et al. 2016. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. (Lond). 13: 27. https://doi.org/10.1186/s12986-016-0080-3
  59. Noratto G, Chew BP, Ivanov I. 2016. Red raspberry decreases heart biomarkers of cardiac remodeling associated with oxidative and inflammatory stress in obese diabetic db/db mice. Food Funct. 7: 4944-4955. https://doi.org/10.1039/C6FO01330A

Cited by

  1. Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring vol.10, pp.8, 2018, https://doi.org/10.1039/c9fo01046g
  2. Descriptive Bacterial and Fungal Characterization of Propolis Using Ultra-High-Throughput Marker Gene Sequencing vol.10, pp.11, 2019, https://doi.org/10.3390/insects10110402
  3. Hypochlorhydria reduces mortality in heart failure caused by Kcne2 gene deletion vol.34, pp.8, 2018, https://doi.org/10.1096/fj.202000013rr
  4. Direct CCL4 Inhibition Modulates Gut Microbiota, Reduces Circulating Trimethylamine N-Oxide, and Improves Glucose and Lipid Metabolism in High-Fat-Diet-Induced Diabetes Mellitus vol.14, pp.None, 2018, https://doi.org/10.2147/jir.s343491
  5. Ginsenoside Rb1, salvianolic acid B and their combination modulate gut microbiota and improve glucolipid metabolism in high-fat diet induced obese mice vol.9, pp.None, 2018, https://doi.org/10.7717/peerj.10598
  6. Description of the antioxidant capacity of Calafate berries (Berberis microphylla) collected in southern Chile vol.41, pp.4, 2018, https://doi.org/10.1590/fst.25820