DOI QR코드

DOI QR Code

Inactivation of Vibrio parahaemolyticus by Aqueous Ozone

  • Feng, Lifang (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Zhang, Kuo (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Gao, Mengsha (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Shi, Chunwei (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Ge, Caiyun (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Qu, Daofeng (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Zhu, Junli (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Shi, Yugang (School of Food Science and Biotechnology, Zhejiang Gongshang University) ;
  • Han, Jianzhong (School of Food Science and Biotechnology, Zhejiang Gongshang University)
  • Received : 2018.01.29
  • Accepted : 2018.05.23
  • Published : 2018.08.28

Abstract

Vibrio parahaemolyticus contamination causes serious foodborne illness and has become a global health problem. As a disinfectant, aqueous ozone can effectively kill a number of bacteria, viruses, parasites, and other microorganisms. In this study, three factors, namely, the aqueous ozone concentration, the exposure time, and the bacterial density, were analyzed by response surface methodology, and the aqueous ozone concentration was the most influential factor in the sterilization ratio. Under low aqueous ozone concentrations (less than 0.125 mg/l), the bacterial cell membranes remained intact, and the ozone was detoxified by intracellular antioxidant enzymes (e.g., superoxide dismutase and catalase). Under high aqueous ozone concentrations (more than 1 mg/l), cell membranes were damaged by the degree of peripheral electronegativity at the cell surface and the concentration of lactate dehydrogenase released into the extracellular space, and the ultrastructures of the cells were confirmed by transmission electron microscopy. Aqueous ozone penetrated the cells through leaking membranes, inactivated the enzymes, inhibited almost all the genes, and degraded the genetic materials of gDNA and total RNA, which eventually led to cell death.

Keywords

References

  1. Wang W, Li M, Li Y. 2015. Intervention strategies for reducing Vibrio parahaemolyticus in seafood: a review. J. Food Sci. 80: R10-R19. https://doi.org/10.1111/1750-3841.12727
  2. Letchumanan V, Chan KG, Lee LH. 2014. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 5: 705.
  3. Su YC, Liu C. 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 24: 549-558. https://doi.org/10.1016/j.fm.2007.01.005
  4. Velazquez-Roman J, Leon-Sicairos N, de Jesus Hernandez-Diaz L, Canizalez-Roman A. 2013. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front. Cell. Infect. Microbiol. 3: 110.
  5. Elvis AM, Ekta JS. 2011. Ozone therapy: a clinical review. J. Nat. Sci. Biol. Med. 2: 66-70. https://doi.org/10.4103/0976-9668.82319
  6. Guzel-Seydim ZB, Greene AK, Seydim AC. 2004. Use of ozone in the food industry. LWT Food Sci. Technol. 37: 453-460. https://doi.org/10.1016/j.lwt.2003.10.014
  7. Perry JJ, Yousef AE. 2011. Decontamination of raw foods using ozone-based sanitization techniques. Annu. Rev. Food Sci. Technol. 2: 281-298. https://doi.org/10.1146/annurev-food-022510-133637
  8. Glowacz M, Colgan R, Rees D. 2015. The use of ozone to extend the shelf-life and maintain quality of fresh produce. J. Sci. Food Agric. 95: 662-671. https://doi.org/10.1002/jsfa.6776
  9. Lee Y, Gerrity D, Lee M, Bogeat AE, Salhi E, Gamage S, et al. 2013. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ. Sci. Technol. 47: 5872-5881. https://doi.org/10.1021/es400781r
  10. von Gunten U. 2003. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37: 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X
  11. Song WJ, Shin JY, Ryu S, Kang DH. 2015. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in apple juice at different pH levels by gaseous ozone treatment. J. Appl. Microbiol. 119: 465-474. https://doi.org/10.1111/jam.12861
  12. Patil S, Valdramidis VP, Cullen PJ, Frias J, Bourke P. 2010. Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels. Food Microbiol. 27: 835-840. https://doi.org/10.1016/j.fm.2010.05.002
  13. Miller FA, Silva CLM, Brandao TRS. 2013. A review on ozone-based treatments for fruit and vegetables preservation. Food Eng. Rev. 5: 77-106. https://doi.org/10.1007/s12393-013-9064-5
  14. Broadwater WT, Hoehn RC, King PH. 1973. Sensitivity of three selected bacterial species to ozone. Appl. Microbiol. 26: 391-393.
  15. Patil S, Cullen PJ, Kelly B, Frias JM, Bourke P. 2009. Extrinsic control parameters for ozone inactivation of Escherichia coli using a bubble column. J. Appl. Microbiol. 107: 830-837. https://doi.org/10.1111/j.1365-2672.2009.04255.x
  16. Pavlovich MJ, Chang HW, Sakiyama Y, Clark DS, Graves DB. 2013. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 46: 145202. https://doi.org/10.1088/0022-3727/46/14/145202
  17. Patil S, Valdramidis VP, Karatzas KA, Cullen PJ, Bourke P. 2011. Assessing the microbial oxidative stress mechanism of ozone treatment through the responses of Escherichia coli mutants. J. Appl. Microbiol. 111: 136-144. https://doi.org/10.1111/j.1365-2672.2011.05021.x
  18. Hess S, Gallert C. 2015. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone. J. Water Health 13: 1020-1028. https://doi.org/10.2166/wh.2015.291
  19. Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, et al. 2016. Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environ. Sci. Technol. 50: 11862-11871. https://doi.org/10.1021/acs.est.6b02640
  20. Hamelin C, Sarhan F, Chung YS. 1977. Ozone-induced DNA degradation in different DNA polymerase I mutants of Escherichia coli K12. Biochem. Biophys. Res. Commun. 77: 220-224. https://doi.org/10.1016/S0006-291X(77)80185-X
  21. Feng LF, Cheng XB, He SS, Li JR. 2013. Identification and evaluation of Vibrio vulnificus-specific target genes. J. Fish. China 37: 790-800. https://doi.org/10.3724/SP.J.1231.2013.38389
  22. Zhang F, Zhu JL, Feng LF. 2016. Inhibition analysis of resveratrol against Vibrio parahaemolyticus biofilm based on RNA-Seq technology. Acta Microbiol. Sin. 56: 856-866.
  23. The Chinese National Hygiene Ministry. 2010. Microbiological examination of food hygiene - examination of Vibrio parahaemolyticus. The National Standard of the People's Republic of China, GB 4789.2-2010. Beijing, China.
  24. The Chinese National Hygiene Ministry. 2016. Food microbiological examination: aerobic plate count. The National Standard of the People's Republic of China, GB 4789.2-2016. Beijing, China.
  25. Rakness K, Gordon G, Langlais B, Masschelein W, Matsumoto N, Richard Y, et al. 1996. Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone Sci. Eng. 18: 209-229. https://doi.org/10.1080/01919519608547327
  26. Sahoo C, Gupta AK. 2012. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J. Hazard. Mater. 215-216: 302-310. https://doi.org/10.1016/j.jhazmat.2012.02.072
  27. Clogston JD, Patri AK. 2011. Zeta potential measurement. Methods Mol. Biol. 697: 63-70.
  28. Kim S, Park J, Choi O, Kim J, Seo YS. 2014. Investigation of quorum sensing-dependent gene expression in Burkholderia gladioli BSR3 through RNA-Seq analyses. J. Microbiol. Biotechnol. 24: 1609-1621. https://doi.org/10.4014/jmb.1408.08064
  29. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  30. Xu H, Luo X, Qian J, Pang X, Song J, Qian G, et al. 2012. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7: e52249. https://doi.org/10.1371/journal.pone.0052249
  31. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578. https://doi.org/10.1038/nprot.2012.016
  32. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, et al. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361: 743-749. https://doi.org/10.1016/S0140-6736(03)12659-1
  33. Hoffmann M, Brown EW, Feng PCH, Keys CE, Fischer M, Monday SR. 2010. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol. 10: 90. https://doi.org/10.1186/1471-2180-10-90
  34. Feng L, Fu C, Yuan D, Miao W. 2014. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation. Aquat. Toxicol. 149: 126-132. https://doi.org/10.1016/j.aquatox.2014.02.004
  35. Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, et al. 2017. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res. 45: 9481-9502. https://doi.org/10.1093/nar/gkx652
  36. Kim JG, Yousef AE, Khadre MA. 2003. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 45: 167-218.
  37. Wilson WW, Wade MM, Holman SC, Champlin FR. 2001. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43: 153-164. https://doi.org/10.1016/S0167-7012(00)00224-4
  38. Klodzinska E, Szumski M, Dziubakiewicz E, Hrynkiewicz K, Skwarek E, Janusz W, et al. 2010. Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis 31: 1590-1596. https://doi.org/10.1002/elps.200900559
  39. Uchide N, Ohyama K, Bessho T, Toyoda H. 2009. Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. Intervirology 52: 164-173. https://doi.org/10.1159/000224644
  40. Hunt NK, Mariñas BJ. 1999. Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Water Res. 33: 2633-2641. https://doi.org/10.1016/S0043-1354(99)00115-3
  41. Kang SW. 2015. Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis. Int. J. Clin. Exp. Med. 8: 14647-14655.
  42. Bocci V. 2008. The question of balance: the interaction between blood and ozone, pp. 155-165. In Valacchi G, Davis P (eds.), Oxidants in Biology. Springer, Netherlands.
  43. Clancy S. 2008. DNA damage & repair: mechanisms for maintaining DNA integrity. Nat. Educ. 1: 103.
  44. Zheng J, Su C, Zhou JW, Xu LK, Qian YY, Chen H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 317: 309-316. https://doi.org/10.1016/j.cej.2017.02.076
  45. Kuroda T, Tsuchiya T. 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta 1794: 763-768. https://doi.org/10.1016/j.bbapap.2008.11.012
  46. Jimenez-Arribas G, Leautaud V, Amabile-Cuevas CF. 2001. Regulatory locus soxRS partially protects Escherichia coli against ozone. FEMS Microbiol. Lett. 195: 175-177. https://doi.org/10.1111/j.1574-6968.2001.tb10517.x
  47. Laukens K, Naulaerts S, Berghe WV. 2015. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics 15: 981-996. https://doi.org/10.1002/pmic.201400296
  48. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676. https://doi.org/10.1093/bioinformatics/bti610

Cited by

  1. Quality of vacuum packaged beef as affected by aqueous ozone and sodium citrate treatment vol.23, pp.1, 2020, https://doi.org/10.1080/10942912.2020.1814322
  2. Alternative Treatment to Remove Resistant Strains of Vibrio cholerae in Water vol.146, pp.10, 2018, https://doi.org/10.1061/(asce)ee.1943-7870.0001795
  3. The main uses of ozone therapy in diseases of large animals: A review vol.136, pp.None, 2018, https://doi.org/10.1016/j.rvsc.2021.01.018
  4. Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology vol.52, pp.6, 2018, https://doi.org/10.1111/are.15124
  5. Bacteriostatic effects of benzyl isothiocyanate on Vibrio parahaemolyticus: Transcriptomic analysis and morphological verification vol.21, pp.1, 2018, https://doi.org/10.1186/s12896-021-00716-4