References
- Vogt T. 2013. Phenylpropanoid biosynthesis. Mol. Plant. 3: 2-20.
- Vermerris W, Nicholson R. 2008. Families of phenolic compounds and means of classification. In Phenolic compound biochemistry, pp. 1-34, Springer.
- Kobayashi S, Makino A. 2009. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109: 5288-5353. https://doi.org/10.1021/cr900165z
- Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177. https://doi.org/10.1007/s11101-012-9242-8
- Hollman PCH. 2001. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 81: 842-852. https://doi.org/10.1002/jsfa.900
- Kumar S, Pandey AK. 2013. Chemistry and biological activity of flavonoids: an overview. Sci. World J. 2013: 1627504.
- Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177. https://doi.org/10.1007/s11101-012-9242-8
- Agrawal AD. 2011. Pharmacological activities of flavonoids: a review. Int. J. Pharm. Sci. Nanotech. 4: 1394-1398.
- Rimando AM, Suh N. 2008. Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med. 74: 1635-1643. https://doi.org/10.1055/s-0028-1088301
- Fu G, Pang H, Wong YH 2008. Naturally occurring phenylethanoid glycosides: potential leads for new theraperutics. Cur. Med. Chem. 15: 2592-2613. https://doi.org/10.2174/092986708785908996
- Xue Z, Yang B. 2016. Phenylethanoid glycosides: research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 21: 991. https://doi.org/10.3390/molecules21080991
- Cifani C, Micioni Di B MV, Vitale G, Ruggieri V, Ciccocioppo R, Massi M. 2010. Effect of salidroside, active principle of Rhodiolarosea extract, on binge eating. Physiol. Behav. 101: 555-562. https://doi.org/10.1016/j.physbeh.2010.09.006
- Viuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvares JA. 2008. Functional properties of honey, propolis and royal jelly. J. Food Sci. 73: R117-124. https://doi.org/10.1111/j.1750-3841.2008.00966.x
- Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, et al. 2017. Nutrigenomics of extra-virgin olive oil: a review. Biofactors 43: 17-41. https://doi.org/10.1002/biof.1318
-
St-Laurent-Thibault C, Arseneault M, Longpre F, Ramassamy C. 2011. Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-
${\beta}$ -induced toxicity. Involvement of the NF-$\kappa$ B signaling. Curr. AlzheimerRes. 8: 543-551. https://doi.org/10.2174/156720511796391845 - Ristagno G, Fumagalli F, Porretta-Serapiglia C, Orru A, Cassina C, Pesaresi M, et al. 2012. Hydroxytyrosolattenuates peripheral neuropathy in streptozotocin-induced diabetes in rats. J. Agric. Food Chem. 60: 5859-5865. https://doi.org/10.1021/jf2049323
- Tripoli E, Giammanoco M, Tabacchi G, Di Majo D, Giammano S, La Guardia M. 2005. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 18: 98-112. https://doi.org/10.1079/NRR200495
- Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil- Izquierdo A. 2014. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front. Nutr. 1: 18.
- Palumbo DR, Occhiuto F, Spadaro F, Circosta C. 2012. Rhodiolarosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res. 26: 878-883. https://doi.org/10.1002/ptr.3662
- Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, et al. 2013. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8: e57251. https://doi.org/10.1371/journal.pone.0057251
- Zhang H, Shen WS, Gao CH, Deng LC, Shen D. 2012. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R. D. 12: 101106.
- Huang M-T, Ma W, Yen P, Xie J-G, Han J, Frenkel K, et al. 1996. Inhibitory effects of caffeic acid phenethyl ester (CAPE) on12-0-tetradecanoylphorbol-13-acetate-induced tumor promotion inmouse skin and the synthesis of DNA, RNA and protein in HeLacells. Carcinogcnesis 17: 761-765. https://doi.org/10.1093/carcin/17.4.761
- Murtaza G, Karim S, Akram MR, Khan SA, Azhar S, Mumtaz A, et al. 2014. Caffeic acid phenethyl ester and therapeutic potentials. BioMed Res. Int. 2014: 145342.
- Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, et al. 2012. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 7: e31833. https://doi.org/10.1371/journal.pone.0031833
- Son S, Lobkowsky EB, Lewis BA. 2001. Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis. Chem. Pharm. Bull. 49: 236-238. https://doi.org/10.1248/cpb.49.236
- Shi H, Xie D, Yang R, Cheng Y. 2014. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. J. Agric. Food Chem. 62: 5046-5053. https://doi.org/10.1021/jf500464k
- Zhang P, Tang Y, Li N-G, Zhu Y,Duan J-A. 2014. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 19: 16458-16476. https://doi.org/10.3390/molecules191016458
- Hua D, Xu P. 2011. Recent advances in biotechnological production of 2-phenylethanol. Biotechnol. Adv. 29: 654-660. https://doi.org/10.1016/j.biotechadv.2011.05.001
- Kim T-Y, Kee S-W, Oh M-K. 2014. Biosynthesis of 2- phenylethanol from glucose with genetically engineered Kluyveomycesmarxianus. Enzyme Microbial. Technol. 61-62: 44-47. https://doi.org/10.1016/j.enzmictec.2014.04.011
- Ma LQ, Gao DY, Wang YN, Wang HH, Zhang JX, Pang XB, et al. 2007. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiolasachalinensis. Plant Cell Rep. 26: 989-999. https://doi.org/10.1007/s00299-007-0317-8
- Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281: 23357- 23366. https://doi.org/10.1074/jbc.M602708200
- Torrens-Spence M, Gillaspy G, Zhao B, Harich K, White RH, Li J. 2012. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem. Biophys. Res. Commun. 418: 211-216. https://doi.org/10.1016/j.bbrc.2011.12.124
- Torrens-Spence M, Liu P, Ding H, Harich K, Gillaspy G, Li J. 2013. Biochemical evaluation of the decarboxylationdeamination activities of plant aromatic amino acid decarboxylase. J. Biol. Chem. 288: 2376-2387. https://doi.org/10.1074/jbc.M112.401752
- Lester G. 1965. Inhibition of growth, synthesis, and permeability in Neurospora crassa byphenethyl alcohol. J. Bacteriol. 90: 29-37.
- Huang C J, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147. https://doi.org/10.1016/S1389-1723(00)80101-2
- Chung H Jr, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147. https://doi.org/10.1016/S1389-1723(00)80101-2
- Kim B, Cho B-R, Hahn J-S. 2013. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111: 115-124.
- Rodriguez A, Martnez JA, Flores N, Escalante A, Gosset G, Bolivar F. 2014. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13: 126.
- Ikeda M.2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626. https://doi.org/10.1007/s00253-005-0252-y
- Lutke-Eversloh T, Stephanopoulos G. 2007.L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110. https://doi.org/10.1007/s00253-006-0792-9
- Sprenger GA. 2007. From scratch value; engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismite. Appl. Microbial. Biotechnol. 75: 1628-1634.
- Kang Z, Zhang C, Du G, Chen J. 2013. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl. Biochem. Biotechnol. 172: 2012-2021.
- Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. 2012. Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Met. Eng. 14: 603-610. https://doi.org/10.1016/j.ymben.2012.08.002
- Xue Y, Chen X, Yang C, Chang J, Shen W, Fan Y. 2017. Engineering Escherichia coli for enhanced tyrosol production. J. Agric. Food Chem. 65: 4708-4714. https://doi.org/10.1021/acs.jafc.7b01369
- Chung D, Kim SY, Ahn J-H. 2017. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 7: 2578. https://doi.org/10.1038/s41598-017-02042-2
- Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, et al. 2014. Production of salidroside in metabolically engineered Escherichia coli. Sci. Rep. 4: 6640.
- Wei T, Cheng B-Y, Liua J-Z. 2016. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci. Rep. 6: 30080. https://doi.org/10.1038/srep30080
- Eudes A, Juminaga D, Baidoo EEK, Collins FW, Keasling JD, Loque D. 2013. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb. Cell Fact. 12: 62. https://doi.org/10.1186/1475-2859-12-62
- An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
- Choo HJ, Kim EJ, Kim SY, Lee Y, Kim B-G, Ahn J-H. 2018. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl. Bio. Chem. 61: 295-301. https://doi.org/10.1007/s13765-018-0360-x
- Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN.2011. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiolasachalinensis. Phytochemistry 72: 862-870. https://doi.org/10.1016/j.phytochem.2011.03.020
- Fan B, Chen T, Zhang S, Wu B, He B. 2017. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Sci. Rep. 7: 463. https://doi.org/10.1038/s41598-017-00568-z
- Berner M, K rug D, B ihlmaier C, V ente A , Muller R , Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrixespanaensis. J. Bacteriol. 188: 2666-2673. https://doi.org/10.1128/JB.188.7.2666-2673.2006
- Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, et al. 2015. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 4458-4476. https://doi.org/10.1128/AEM.00405-15
- Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, et al. 2001. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276: 36566-36574. https://doi.org/10.1074/jbc.M104047200
- Widjaja A, Yeh T-H, Ju Y-H. 2008. Enzymatic synthesis of caffeic acid phenethyl ester. J. Chin. Inst. Chem. Eng. 39: 13-418. https://doi.org/10.1016/j.jcice.2007.11.010
- Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, et al. 2017. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Met. Eng. 44: 89-99. https://doi.org/10.1016/j.ymben.2017.09.011
Cited by
- Whole-Genome Sequence of Enterobacter sp. Strain MF024, Isolated from Soil in Shanghai, China vol.8, pp.37, 2018, https://doi.org/10.1128/mra.00650-19
- Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids vol.8, pp.None, 2018, https://doi.org/10.3389/fbioe.2020.00407