DOI QR코드

DOI QR Code

LUMINOSITY PROFILES OF PROMINENT STELLAR HALOS

  • Received : 2018.05.09
  • Accepted : 2018.06.30
  • Published : 2018.08.31

Abstract

We present a sample of 54 disk galaxies which have well developed extraplanar structures. We selected them using visual inspections from the color images of the Sloan Digital Sky Survey. Since the sizes of the extraplanar structures are comparable to the disks, they are considered as prominent stellar halos rather than large bulges. A single $S{\acute{e}}rsic$ profile fitted to the surface brightness along the minor-axis of the disk shows a luminosity excess in the central regions for the majority of sample galaxies. This central excess is considered to be caused by the central bulge component. The mean $S{\acute{e}}rsic$ index of the single component model is $1.1{\pm}0.9$. A double $S{\acute{e}}rsic$ profile model that employs n = 1 for the inner region, and varying n for the outer region, provides a better fit than the single $S{\acute{e}}rsic$ profile model. For a small fraction of galaxies, a $S{\acute{e}}rsic$ profile fitted with n = 4 for the inner region gives similar results. There is a weak tendency of increasing n with increasing luminosity and central velocity dispersion, but there is no dependence on the local background density.

Keywords

References

  1. Abadi, M. G., Navarro, J. F., & Steinmetz, M. 2006, Stars Beyond Galaxies: the Origin of Extended Luminous Haloes around Galaxies, MNRAS, 365, 747 https://doi.org/10.1111/j.1365-2966.2005.09789.x
  2. Abazajian, K. N., et al. 2009, The Seventh Data Release of the Sloan Digital Sky Survey, ApJS, 182, 543 https://doi.org/10.1088/0067-0049/182/2/543
  3. Abe, F., Bond, I. A., Carter, B. S., et al. 1999, Observation of the Halo of the Edge-On Galaxy IC 5249, AJ, 118, 261 https://doi.org/10.1086/300907
  4. Ann, H. B. 2017, Morphology of Dwarf Galaxies in Isolated Satellite Systems, JKAS, 50, 111
  5. Ann, H. B., Seo, M., & Ha, D. K. 2015, A Catalog of Visually Classified Galaxies in the Local (z 0.01) Universe, ApJS, 217, 27 https://doi.org/10.1088/0067-0049/217/2/27
  6. Bakos, J., & Trujillo, I. 2012, Deep Surface Brightness Profiles of Spiral Galaxies from SDSS Stripe82: Touching Stellar Halos, arXiv:1204.3082
  7. Bell, E. F., et al. 2008, The Accretion Origin of the Milky Way's Stellar Halo, ApJ, 680, 295 https://doi.org/10.1086/588032
  8. Binggeli, B., & Jerjen, H. 1998, Is the Shape of the Luminosity Profile of Dwarf Elliptical Galaxies an Useful Distance Indicator?, A&Ap, 333, 17
  9. Brook, C. B., Kawata, D., Gibson, B. K., & Flynn, C. 2004, Stellar Halo Constraints on Simulated Late-Type Galaxies, MNRAS, 349, 52 https://doi.org/10.1111/j.1365-2966.2004.07464.x
  10. Bullock, J. S., & Johnston, K. V. 2005, Tracing Galaxy Formation with Stellar Halos. I. Methods, ApJ, 635, 931 https://doi.org/10.1086/497422
  11. Burkhead, M. S. 1986, A Photometric Study of M104, AJ, 91, 777 https://doi.org/10.1086/114059
  12. Caon, N., Capaccioli, M., & D Onofrio, M. 1993, On the Shape of the Light Profiles of Early Type Galaxies, MNRAS 265, 1013 https://doi.org/10.1093/mnras/265.4.1013
  13. Chapman, S. C., Ibata, R., Lewis, G. F., Ferguson, A. M. N., Irwin, M., McConnachie, A., & Tanvir, N. 2006, A Kinematically Selected, Metal-Poor Stellar Halo in the Outskirts of M31, ApJ, 653, 255 https://doi.org/10.1086/508599
  14. Choi, Y.-Y., Han, D.-H., & Kim, S. S. 2010, Korea Institute for Advanced Study Value-Added Galaxy Catalog, JKAS, 43,191
  15. Cooper, A. P., Cole, S., Frenk, C. S., et al. 2010, Galactic Stellar Haloes in the CDM Model, MNRAS, 406, 744 https://doi.org/10.1111/j.1365-2966.2010.16740.x
  16. Cooper, A. P., Parry, O. H., Lowing, B., Cole, S., & Frenk, C. S. 2015, Formation of in-situ Stellar Haloes in Milky Way-Mass Galaxies, MNRAS, 454, 3185 https://doi.org/10.1093/mnras/stv2057
  17. Courteau, S., Widrow, L. M., McDonald, M., Guhathakurta, P., Gilbert, K. M., Zhu, Y., Beaton, R. L., & Majewski, S. R. 2011, The Luminosity Profile and Structural Parameters of the Andromeda Galaxy, ApJ, 739, 20 https://doi.org/10.1088/0004-637X/739/1/20
  18. de Jong, R. S., Seth, A. C., Radburn-Smith, D. J., et al. 2007, Stellar Populations across the NGC 4244 Truncated Galactic Disk, ApJ, 667, 49 https://doi.org/10.1086/519485
  19. De Lucia, G., & Helmi, A. 2008, The Galaxy and Its Stellar Halo: Insights on Their Formation from a Hybrid Cosmological Approach, MNRAS, 391, 14 https://doi.org/10.1111/j.1365-2966.2008.13862.x
  20. de Vaucouleurs, G. 1958, Photoelectric Photometry of the Andromeda Nebula in the UBV System, ApJ, 128, 465 https://doi.org/10.1086/146564
  21. de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G. Jr., Buta, R. J., Paturel, G., & Fouque, P. 1991, Third Reference Catalogue of Bright Galaxies (New York: Springer)
  22. Emsellem, E., Bacon, R., Monnet, G., & Poulain, P. 1996, The Sombrero Galaxy. II. Colours, Kinematics and Line Strengths of the Central Region, A&A, 312, 777
  23. Ferguson, A. M. N., Irwin, M. J., Ibata, R. A., Lewis, G. F., & Tanvir, N. R. 2002, Evidence for Stellar Substructure in the Halo and Outer Disk of M31, AJ, 124, 1452
  24. Fisher, D. B., & Drory, N. 2008, The Structure of Classical Bulges and Pseudobulges: the Link between Pseudobulges and SERSIC Index, AJ, 136, 773 https://doi.org/10.1088/0004-6256/136/2/773
  25. Font, A. S., Johnston, K. V., Bullock, J. S., & Robertson, B. E. 2006, Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a DM Universe, ApJ, 638, 585 https://doi.org/10.1086/498970
  26. Font, A. S., Johnston, K. V., Ferguson, A. M. N., Bullock, J. S., Robertson, B. E., Tumlinson, J., & Guhathakurta, P. 2006, The Stellar Content of Galaxy Halos: A Comparison between DM Models and Observations of M31, ApJ, 673, 215
  27. Font, A. S., McCarthy, I. G., Crain, R. A., Theuns, T., Schaye, J., Wiersma, R. P. C., & Dalla V. C. 2011, Cosmological Simulations of the Formation of the Stellar Haloes around Disc Galaxies, MNRAS, 416, 2802 https://doi.org/10.1111/j.1365-2966.2011.19227.x
  28. Freeman, K. C. 1970, On the Disks of Spiral and S0 Galaxies, ApJ, 160, 811 https://doi.org/10.1086/150474
  29. Gadotti, D., & Sanchez-Janssem, R. 2012, Surprises in Image Decomposition of Edge-On Galaxies: Does Sombrero Have a (Classical) Bulge? MNRAS, 423, 877 https://doi.org/10.1111/j.1365-2966.2012.20925.x
  30. Gilbert, K. M., Font, A. S., Johnston, K. V., & Guhathakurta, P. 2009, The Dominance of Metal-Rich Streams in Stellar Halos: A Comparison Between Substructure in M31 and DM Models, ApJ, 701, 776 https://doi.org/10.1088/0004-637X/701/1/776
  31. Goto, T., Yamauchi, C., Fujita, Y., Okamura, S., Sekiguchi, M., Smail, I., Bernardi, M., & Gomez, P. L. 2003, The Morphology-Density Relation in the Sloan Digital Sky Survey, MNRAS, 346, 601 https://doi.org/10.1046/j.1365-2966.2003.07114.x
  32. Graham, A. W., Trujillo, I., & Caon, N. 2001, Galaxy Light Concentration. I. Index Stability and the Connection with Galaxy Structure, Dynamics, and Supermassive Black Holes, AJ, 122, 1707 https://doi.org/10.1086/323090
  33. Graham, A. W. 2002, The 'Photometric Plane' of Elliptical Galaxies, MNRAS, 334, 859 https://doi.org/10.1046/j.1365-8711.2002.05548.x
  34. Grant, N. I., Kuipers, J. A., & Phillipps, S. 2005, Nucleated Dwarf Elliptical Galaxies in the Virgo Cluster, MNRAS, 363, 1019 https://doi.org/10.1111/j.1365-2966.2005.09518.x
  35. Harris, W., Harris, H. C., & Harris, G. L. H. 1984, Globular Clusters in Galaxies Beyond the Local Group. III NGC 4594 (the Sombrero), AJ, 89, 216 https://doi.org/10.1086/113504
  36. Helmi A., & White, S. D. M. 1999, Building up the Stellar Halo of the Galaxy, MNRAS, 307, 495 https://doi.org/10.1046/j.1365-8711.1999.02616.x
  37. Helmi, A. 2008, The Stellar Halo of the Galaxy, A&ARv, 15, 145 https://doi.org/10.1007/s00159-008-0009-6
  38. Hes, R., & Peletier, R. F. 1993, The Bulge of M 104 - Stellar Content and Kinematics, A&A, 268, 539
  39. Ho, Luis C., Filippenko, A. V., & Sargent, W. L. W. 1997, A Search for "Dwarf" Seyfert Nuclei. III. Spectroscopic Parameters and Properties of the Host Galaxies, ApJS, 112, 315 https://doi.org/10.1086/313041
  40. Ibata, R., Martin, N. F., Irwin, M., Chapman, S., Ferguson, A. M. N., Lewis, G. F., & McConnachie, A. W. 2007, The Haunted Halos of Andromeda and Triangulum: A Panorama of Galaxy Formation in Action, ApJ, 671, 1591 https://doi.org/10.1086/522574
  41. Ibata, R. A., Ibata, N. G., Lewis, G. F., Martin, N. F., Conn, A., Elahi, P., Arias, V., & Fernando, N. 2014, The Large-Scale Structure of the Halo of the Andromeda Galaxy. I. Global Stellar Density, Morphology and Metallicity Properties, ApJ, 780, 128
  42. Ichikawa, S.-I., Okamura, S., Watanabe, M., Hamabe, M., Aoki, T., & Kodaira, K. 1987, SPIRAL: Surface Photometry Interactive Reduction and Analysis Library, Annals of the Tokyo Astronomical Observatory, 21, 285
  43. Janz, J., Laurikainen, E., Lisker, T., et al. 2014, A Near-Infrared Census of the Multicomponent Stellar Structure of Early-Type Dwarf Galaxies in the Virgo Cluster, ApJ, 786, 105 https://doi.org/10.1088/0004-637X/786/2/105
  44. Jablonka, P., Tafelmeyer, M., Courbin, F., & Ferguson, A. M. N. 2010, Direct Detection of Galaxy Stellar Halos: NGC 3957 as a Test Case, A&A, 513, 78 https://doi.org/10.1051/0004-6361/200913320
  45. Jarvis, B. J., & Freeman, K. C. 1985, The Dynamics of Galactic Bulges - NGC 7814 and NGC 4594, ApJ, 295, 324 https://doi.org/10.1086/163377
  46. Johnston, K. V., Hernquist L., & Bolte, M. 1996, Fossil Signatures of Ancient Accretion Events in the Halo, ApJ, 465, 278 https://doi.org/10.1086/177418
  47. Johnston, K. V., Bullock, J. S., Sharma, S., Font, A., Robertson, B. E., & Leitner, S. N. 2008, Tracing Galaxy Formation with Stellar Halos. II. Relating Substructure in Phase and Abundance Space to Accretion Histories, ApJ, 689, 936 https://doi.org/10.1086/592228
  48. Kalirai, J. S., Gilbert, K. M., Guhathakurta, P., Majewski, S. R., Ostheimer, J. C., Rich, R. M., Cooper, M. C., Reitzel, D. B., & Patterson, R. J. 2006, The Metal-Poor Halo of the Andromeda Spiral Galaxy (M31)1, ApJ, 648, 389 https://doi.org/10.1086/505697
  49. Katz, N., & Gunn, J. E. 1991, Dissipational Galaxy Formation. I - Effects of Gasdynamics, ApJ, 377, 365 https://doi.org/10.1086/170367
  50. Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, The Formation and Evolution of GalaxiesWithinMerging Dark Matter Haloes, MNRAS, 264, 201 https://doi.org/10.1093/mnras/264.1.201
  51. Kent, S. M. 1988, Dark Matter in Spiral Galaxies. III - The SA Galaxies, AJ, 96, 514 https://doi.org/10.1086/114829
  52. Kim, K. H., Lee, K.-H., & Ann, H. B. 2006, Luminosity Profiles of dE and dS0 Galaxies in the Virgo Cluster, JKAS, 39, 57
  53. Kormendy, J. 1977, Brightness Distributions in Compact and Normal Galaxies. III - Decomposition of Observed Profiles into Spheroid and Disk Components, ApJ, 217, 406 https://doi.org/10.1086/155589
  54. Kormendy, J. 1988, Evidence for a Central Dark Mass in NGC 4594 (the Sombrero Galaxy), ApJ, 335, 40 https://doi.org/10.1086/166904
  55. Kormendy, J., Bender, R., Ajhar, E. A., Dressler, A., Faber, S. M., Gebhardt, K., Grillmair, C., Lauer, T. R., Richstone, D., & Tremaine, S. 1996, Hubble Space Telescope Spectroscopic Evidence for a 1 X 10 9 Msun Black Hole in NGC 4594, ApJ, 473, L91 https://doi.org/10.1086/310399
  56. Kormendy, J., & Kennicutt, R. C. Jr. 2004, Secular Evolution and the Formation of Pseudobulges in Disk Galaxies, ARA&A, 42. 603 https://doi.org/10.1146/annurev.astro.42.053102.134024
  57. Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A., & Grillmair, C. J. 2001, Properties of Globular Cluster Systems in Nearby Early-Type Galaxies, AJ, 121, 2974 https://doi.org/10.1086/321081
  58. Lequeux, J., Fort, B., Dantel-Fort, M., Cuillandre, J.-C., & Mellier, Y. 1996, V- and I-Band Observations of the Halo of NGC 5907, A&A, 312, 1
  59. Lequeux, J., Combes, F., Dantel-Fort, M., Cuillandre, J.-C., Fort, B., & Mellier, Y. 1998, NGC 5907 Revisited: a Stellar Halo Formed by Cannibalism?, A&A, 334, 9
  60. McCarthy, I. G., Font, A. S., Crain, R. A., Deason, A. J., Schaye, J., & Theuns, T. 2011, Global Structure and Kinematics of Stellar Haloes in Cosmological Hydrodynamic Simulations, MNRAS, 421, 190
  61. McConnachie, A. W., Chapman, S. C., Ibata, R. A., Ferguson, A. M. N., Irwin, M. J., Lewis, G. F., Tanvir, N. R., & Martin, N. 2006, The Stellar Halo and Outer Disk of M33, ApJ, 647, 25 https://doi.org/10.1086/505291
  62. McQuinn, K. B. W., Skillman, E, D., Dolphin, A. E., Berg, D., & Kennicutt, R. 2016, The Distance to M104, AJ, 152, 144 https://doi.org/10.3847/0004-6256/152/5/144
  63. Mollenhoff, C., & Heidt, J. 2001, Surface Photometry of Spiral Galaxies in NIR: Structural Parameters of Disks and Bulges, A&A, 368, 16 https://doi.org/10.1051/0004-6361:20000335
  64. Morrison, H. L., Miller, E. D., Harding, P., Stinebring, D. R., & Boroson, T. A. 1997, AJ, 113, 2061 https://doi.org/10.1086/118418
  65. Mouhcine, M., Rejkuba, M., & Ibata, R. 2007, The Stellar Halo of the Edge-On Galaxy NGC 891, MNRAS, 381, 873 https://doi.org/10.1111/j.1365-2966.2007.12291.x
  66. Mould, J. R., et al. 2000, The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XXVII. A Derivation of the Hubble Constant Using the Fundamental Plane and Dn-lations in Leo I, Virgo, and Fornax, ApJ, 529, 786 https://doi.org/10.1086/308304
  67. Muldrew, S. I., et al. 2012, Measures of Galaxy Environment - I. What Is 'Environment'?, MNRAS, 419, 2670 https://doi.org/10.1111/j.1365-2966.2011.19922.x
  68. Okamoto, T. 2013, The Origin of Pseudo-Bulges in Cosmological Simulations of Galaxy Formation, MNRAS 428, 718 https://doi.org/10.1093/mnras/sts067
  69. Okamura, S. 1988, Surface Photometry of Galaxies, PASP, 100, 524 https://doi.org/10.1086/132201
  70. Park, C., Choi, Y.-Y., Vogeley, M. S., Gott, J. R. III, Blanton, M. R., & SDSS Collaboration, Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey, ApJ, 658, 898
  71. Peng, Y.-J., Lilly, S. J., Renzini, A., & Carollo, M. 2012, Mass and Environment as Drivers of Galaxy Evolution. II. The Quenching of Satellite Galaxies as the Origin of Environmental Effects, ApJ, 757, 4 https://doi.org/10.1088/0004-637X/757/1/4
  72. Prugniel, P., & Simien, F. 1997, The Fundamental Plane of Early-Type Galaxies: Non-Homology of the Spatial Structure, A&A, 321, 122
  73. Purcell, C. W., Bullock, J. S., & Kazantzidis, S. 2010, Heated Disc Stars in the Stellar Halo, MNRAS, 404, 1711
  74. Read, J. I., Pontzen, A. P., & Viel, M. 2006, On the Formation of Dwarf Galaxies and Stellar Haloes, MNRAS, 371, 885 https://doi.org/10.1111/j.1365-2966.2006.10720.x
  75. Romanowsky, A. J., Martinez-Delgado, D., Martin, N. F., Morales, G., Jennings, Z. G., GaBany, R. J., Brodie, J. P., Grebel, E. K., Schedler, J., & Sidonio, M. 2016, Satellite Accretion in Action: A Tidally Disrupting Dwarf Spheroidal around the Nearby Spiral Galaxy NGC 253, MNRAS, 457, L103 https://doi.org/10.1093/mnrasl/slv207
  76. Ryden, B. S., Terndrup, D. M., Pogge, R. W., & Lauer, T. R. 1999, Detailed Surface Photometry of Dwarf Elliptical and Dwarf S0 Galaxies in the Virgo Cluster, ApJ, 517, 650 https://doi.org/10.1086/307201
  77. Sackett, P. D., Morrisoni, H. L., Harding, P., & Boroson, T. A. 1944, A Faint Luminous Halo That May Trace the Dark Matter around Spiral Galaxy NGC5907, Nature, 370, 441
  78. Sales, L. V., Navarro, J. F., Abadi, M. G., & Steinmetz, M. 2006, Satellites of Simulated Galaxies: Survival, Merging and Their Relationto the Dark and Stellar Haloes, MNRAS, 379, 1464
  79. Searle, L., & Zinn, R. 1978, Compositions of Halo Clusters and the Formation of the Galactic Halo, ApJ, 225, 357 https://doi.org/10.1086/156499
  80. Seo, M., & Ann, H. B. 2018, in preparation
  81. Sersic J. L. 1968, Atlas de Galaxias Australes (Cordoba: Observatorio Astronomico)
  82. Seth, A., de Jong, R., Dalcanton, J,, & GHOSTS Team. 2006, Detection of a Stellar Halo in NGC 4244, IAUS, 241, 523
  83. Springel, V., Frenk, C. S., White, S. D. M., & Simon, D. M. 2006, The Large-Scale Structure of the Universe, Nature, 440, 1137 https://doi.org/10.1038/nature04805
  84. Steinmetz, M., & Muller, E. 1995, The Formation of Disc Galaxies in a Cosmological Context: Structure and Kinematics, MNRAS, 276, 549 https://doi.org/10.1093/mnras/276.2.549
  85. Wainscoat, R. J., Hyland, A. R., & Freeman, A. C. 1990, Near-Infrared Surface Photometry of Three Early-Type, Edge-On Spiral Galaxies - NGC 4594, NGC 7123, and NGC 7814, ApJ, 348, 85 https://doi.org/10.1086/168216
  86. Wagner, S. J., Dettmar, R. J., & Bender, R. 1989, Stellar Kinematics of Bulge, Disk and Nucleus in NGC 4594, A&A, 215, 243
  87. White, S. D. M., & Frenk, C. S. 1991, Galaxy Formation through Hierarchical Clustering, ApJ, 379, 52 https://doi.org/10.1086/170483
  88. Zibetti, S., & Ferguson, A. M. N. 2004, A Faint Red Stellar Halo around an Edge-On Disc Galaxy in the Hubble Ultra Deep Field, MNRAS, 352, 6 https://doi.org/10.1111/j.1365-2966.2004.08106.x
  89. Zibetti, S., White, S. D. M., & Brinkmann, J. 2004, Haloes around Edge-On Disc Galaxies in the Sloan Digital Sky Survey, MNRAS, 347, 556 https://doi.org/10.1111/j.1365-2966.2004.07235.x
  90. Zolotov, A., Willman, B., Brooks, A. M., Governato, F., Brook, C. B., Hogg, D. W., Quinn, T., & Stinson, G. 2009, The Dual Origin of Stellar Halos, ApJ, 702, 1058 https://doi.org/10.1088/0004-637X/702/2/1058
  91. Zolotov, A., Willman, B., Brooks, A. M., Governato, F., Hogg, D.W., Shen, S., &Wadsley, J. 2010, The Dual Origin of Stellar Halos. II. Chemical Abundances as Tracers of Formation History, ApJ, 721, 738 https://doi.org/10.1088/0004-637X/721/1/738