DOI QR코드

DOI QR Code

Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation

  • Kim, Minjeong (College of Pharmacy, Ewha Womans University) ;
  • Jeong, Ji Seong (Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology) ;
  • Kim, Hyunji (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Hwang, Seungwoo (Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Il-Hyun (GENECAST Co.) ;
  • Lee, Byung-Chul (GENECAST Co.) ;
  • Yoon, Sung Il (Department of Epidemiology and Health Promotion, and Institute for Health Promotion, Graduate School of Public Health, Yonsei University) ;
  • Jee, Sun Ha (Lab frontier Co.) ;
  • Nam, Ki Taek (Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine) ;
  • Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
  • Received : 2018.04.30
  • Accepted : 2018.06.26
  • Published : 2018.09.01

Abstract

Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry (2002) Toxicological profile for Di (2-ethylhexyl) phthalate. US Department of Health Human Services.
  2. Beck, M. J., Padgett, E. L., Bowman, C. J., Wilson, D. T., Kaufman, L. E., Varsho, B. J., Stump, D. G., Nemec, M. D. and Holson, J. F. (2006) Nonclinical juvenile toxicity testing. In Developmental and Reproductive Toxicology: A Practical Approach, pp. 263-328.
  3. Boas, M., Feldt-Rasmussen, U., Skakkebaek, N. E. and Main, K. M. (2006) Environmental chemicals and thyroid function. Eur. J. Endocrinol. 154, 599-611. https://doi.org/10.1530/eje.1.02128
  4. Bowman, C. J., Chmielewski, G., Lewis, E., Ripp, S., Sawaryn, C. M. and Cross, D. M. (2011) Juvenile toxicity assessment of anidulafungin in rats: an example of navigating case-by-case study design through scientific and regulatory challenges. Birth Defects Res. B Dev. Reprod. Toxicol. 92, 333-344.
  5. Calafat, A. M. and McKee, R. H. (2006) Integrating biomonitoring exposure data into the risk assessment process: phthalates [diethyl phthalate and di(2-ethylhexyl) phthalate] as a case study. Environ. Health Perspect. 114, 1783-1789. https://doi.org/10.1289/ehp.9059
  6. Campioli, E., Batarseh, A., Li, J. and Papadopoulos, V. (2011) The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS ONE 6, e28750. https://doi.org/10.1371/journal.pone.0028750
  7. Chung, Y. H., Han, J. H., Lee, S. B. and Lee, Y. H. (2017) Inhalation toxicity of bisphenol A and its effect on estrous cycle, spatial learning, and memory in rats upon whole-body exposure. Toxicol. Res. 33, 165-171. https://doi.org/10.5487/TR.2017.33.2.165
  8. Cutanda, F., Koch, H. M., Esteban, M., Sanchez, J., Angerer, J. and Castano, A. (2015) Urinary levels of eight phthalate metabolites and bisphenol A in mother-child pairs from two Spanish locations. Int. J. Hyg. Environ. Health 218, 47-57. https://doi.org/10.1016/j.ijheh.2014.07.005
  9. Davies, L. and Welch, H. G. (2006) Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 295, 2164-2167. https://doi.org/10.1001/jama.295.18.2164
  10. Dong, X., Dong, J., Zhao, Y., Guo, J., Wang, Z., Liu, M., Zhang, Y. and Na, X. (2017) Effects of long-term in vivo exposure to di-2-ethylhexyl-phthalate on thyroid hormones and the TSH/TSHR signaling pathways in wistar rats. Int. J. Environ. Res. Public Health 14, E44. https://doi.org/10.3390/ijerph14010044
  11. Feige, J. N., Gelman, L., Rossi, D., Zoete, V., Metivier, R., Tudor, C., Anghel, S. I., Grosdidier, A., Lathion, C. and Engelborghs, Y. (2007) The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor ${\gamma}$ modulator that promotes adipogenesis. J. Biol. Chem. 282, 19152-19166. https://doi.org/10.1074/jbc.M702724200
  12. Guo, Y., Wu, Q. and Kannan, K. (2011) Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 37, 893-898. https://doi.org/10.1016/j.envint.2011.03.005
  13. Hsieh, T.-H., Tsai, C.-F., Hsu, C.-Y., Kuo, P.-L., Lee, J.-N., Chai, C.-Y., Wang, S.-C. and Tsai, E.-M. (2012) Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J. 26, 778-787. https://doi.org/10.1096/fj.11-191742
  14. Jeong, J. S., Nam, K. T., Lee, B., Pamungkas, A. D., Song, D., Kim, M., Yu, W. J., Lee, J., Jee, S., Park, Y. H. and Lim, K. M. (2017) Low-dose bisphenol A increases bile duct proliferation in juvenile rats: a possible evidence for risk of liver cancer in the exposed population? Biomol. Ther. (Seoul) 25, 545-552. https://doi.org/10.4062/biomolther.2017.148
  15. Kato, K., Silva, M. J., Needham, L. L. and Calafat, A. M. (2005) Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Anal. Chem. 77, 2985-2991. https://doi.org/10.1021/ac0481248
  16. Kim, C. S., Kim, J., Lee, Y. M., Sohn, E. and Kim, J. S. (2016) Esculetin, a coumarin derivative, inhibits aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Biomol. Ther. (Seoul) 24, 178-183. https://doi.org/10.4062/biomolther.2015.101
  17. Kim, S., Mun, G. I., Choi, E., Kim, M., Jeong, J. S., Kang, K. W., Jee, S., Lim, K. M. and Lee, Y. S. (2018) Submicromolar bisphenol A induces proliferation and DNA damage in human hepatocyte cell lines in vitro and in juvenile rats in vivo. Food Chem. Toxicol. 111, 125-132. https://doi.org/10.1016/j.fct.2017.11.010
  18. Koo, H. J. and Lee, B. M. (2007) Toxicokinetic relationship between di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in rats. J. Toxicol. Environ. Health A 70, 383-387. https://doi.org/10.1080/15287390600882150
  19. Latini, G. (2005) Monitoring phthalate exposure in humans. Clin. Chim. Acta 361, 20-29. https://doi.org/10.1016/j.cccn.2005.05.003
  20. Latini, G., De Felice, C., Presta, G., Del Vecchio, A., Paris, I., Ruggieri, F. and Mazzeo, P. (2003) In utero exposure to di-(2-ethylhexyl) phthalate and duration of human pregnancy. Environ. Health Perspect. 111, 1783-1785. https://doi.org/10.1289/ehp.6202
  21. Liao, Y., Smyth, G. K. and Shi, W. (2013) The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108. https://doi.org/10.1093/nar/gkt214
  22. Liu, C., Zhao, L., Wei, L. and Li, L. (2015) DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environ. Sci. Pollut. Res. Int. 22, 12711-12719. https://doi.org/10.1007/s11356-015-4567-7
  23. Liu, J., Wang, W., Zhu, J., Li, Y., Luo, L., Huang, Y. and Zhang, W. (2018) Di(2-ethylhexyl) phthalate (DEHP) influences follicular development in mice between the weaning period and maturity by interfering with ovarian development factors and microRNAs. Environ. Toxicol. 33, 535-544. https://doi.org/10.1002/tox.22540
  24. Lopez-Carrillo, L., Hernandez-Ramirez, R. U., Calafat, A. M., Torres-Sanchez, L., Galvan-Portillo, M., Needham, L. L., Ruiz-Ramos, R. and Cebrian, M. E. (2010) Exposure to phthalates and breast cancer risk in northern Mexico. Environ. Health Perspect. 118, 539-544. https://doi.org/10.1289/ehp.0901091
  25. Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8
  26. Main, K. M., Mortensen, G. K., Kaleva, M. M., Boisen, K. A., Damgaard, I. N., Chellakooty, M., Schmidt, I. M., Suomi, A. M., Virtanen, H. E., Petersen, J. H., Andersson, A. M., Toppari, J. and Skakkebaek, N. E. (2006) Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ. Health Perspect. 114, 270-276. https://doi.org/10.1289/ehp.8075
  27. Martino-Andrade, A. J. and Chahoud, I. (2010) Reproductive toxicity of phthalate esters. Mol. Nutr. Food Res. 54, 148-157. https://doi.org/10.1002/mnfr.200800312
  28. Meeker, J. D., Calafat, A. M. and Hauser, R. (2007) Di(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ. Health Perspect. 115, 1029-1034. https://doi.org/10.1289/ehp.9852
  29. Meeker, J. D. and Ferguson, K. K. (2011) Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in U.S. adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007-2008. Environ. Health Perspect. 119, 1396-1402. https://doi.org/10.1289/ehp.1103582
  30. Miao, Y., Wang, R., Lu, C., Zhao, J. and Deng, Q. (2017) Lifetime cancer risk assessment for inhalation exposure to di(2-ethylhexyl) phthalate (DEHP). Environ. Sci. Pollut. Res. Int. 24, 312-320. https://doi.org/10.1007/s11356-016-7797-4
  31. Mylchreest, E., Sar, M., Cattley, R. C. and Foster, P. M. (1999) Disruption of androgen-regulated male reproductive development by di(n-butyl) phthalate during late gestation in rats is different from flutamide. Toxicol. Appl. Pharmacol. 156, 81-95. https://doi.org/10.1006/taap.1999.8643
  32. Ohtani, H., Miura, I. and Ichikawa, Y. (2000) Effects of dibutyl phthalate as an environmental endocrine disruptor on gonadal sex differentiation of genetic males of the frog Rana rugosa. Environ. Health Perspect. 108, 1189-1193. https://doi.org/10.1289/ehp.001081189
  33. Schettler, T. (2006) Human exposure to phthalates via consumer products. Int. J. Androl. 29, 134-139. https://doi.org/10.1111/j.1365-2605.2005.00567.x
  34. Selenskas, S., Teta, M. J. and Vitale, J. N. (1995) Pancreatic cancer among workers processing synthetic resins. Am. J. Ind. Med. 28, 385-398. https://doi.org/10.1002/ajim.4700280308
  35. Takatori, S., Kitagawa, Y., Kitagawa, M., Nakazawa, H. and Hori, S. (2004) Determination of di(2-ethylhexyl)phthalate and mono(2-ethylhexyl)phthalate in human serum using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 804, 397-401. https://doi.org/10.1016/j.jchromb.2004.01.056
  36. Takeshita, A., Inagaki, K., Igarashi-Migitaka, J., Ozawa, Y. and Koibuchi, N. (2006) The endocrine disrupting chemical, diethylhexyl phthalate, activates MDR1 gene expression in human colon cancer LS174T cells. J. Endocrinol. 190, 897-902. https://doi.org/10.1677/joe.1.06664
  37. Teitelbaum, S. L., Britton, J. A., Calafat, A. M., Ye, X., Silva, M. J., Reidy, J. A., Galvez, M. P., Brenner, B. L. and Wolff, M. S. (2008) Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ. Res. 106, 257-269. https://doi.org/10.1016/j.envres.2007.09.010
  38. Ventrice, P., Ventrice, D., Russo, E. and De Sarro, G. (2013) Phthalates: European regulation, chemistry, pharmacokinetic and related toxicity. Environ. Toxicol. Pharmacol. 36, 88-96. https://doi.org/10.1016/j.etap.2013.03.014
  39. Wang, B., Wang, H., Zhou, W., Chen, Y., Zhou, Y. and Jiang, Q. (2015) Urinary excretion of phthalate metabolites in school children of China: implication for cumulative risk assessment of phthalate exposure. Environ. Sci. Technol. 49, 1120-1129. https://doi.org/10.1021/es504455a
  40. Weuve, J., Sanchez, B. N., Calafat, A. M., Schettler, T., Green, R. A., Hu, H. and Hauser, R. (2006) Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites. Environ. Health Perspect. 114, 1424-1431. https://doi.org/10.1289/ehp.8926
  41. Wu, M. T., Wu, C. F., Chen, B. H., Chen, E. K., Chen, Y. L., Shiea, J., Lee, W. T., Chao, M. C. and Wu, J. R. (2013) Intake of phthalate-tainted foods alters thyroid functions in Taiwanese children. PLoS ONE 8, e55005. https://doi.org/10.1371/journal.pone.0055005
  42. Zhai, W., Huang, Z., Chen, L., Feng, C., Li, B. and Li, T. (2014) Thyroid endocrine disruption in zebrafish larvae after exposure to mono-(2-ethylhexyl) phthalate (MEHP). PLoS ONE 9, e92465. https://doi.org/10.1371/journal.pone.0092465

Cited by

  1. Effect of the TYK-2/STAT-3 pathway on lipid accumulation induced by mono-2-ethylhexyl phthalate vol.484, pp.None, 2018, https://doi.org/10.1016/j.mce.2019.01.012
  2. Les xénobiotiques, quel impact sur les maladies métaboliques ? vol.54, pp.5, 2018, https://doi.org/10.1016/j.cnd.2019.07.002
  3. Synthesis and Evaluation of Soy Fatty Acid Ester Estolides as Bioplasticizers in Poly(Vinyl Chloride) vol.96, pp.11, 2018, https://doi.org/10.1002/aocs.12279
  4. Toxic Effects of the Mixture of Phthalates and Bisphenol A—Subacute Oral Toxicity Study in Wistar Rats vol.17, pp.3, 2018, https://doi.org/10.3390/ijerph17030746
  5. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact vol.17, pp.16, 2018, https://doi.org/10.3390/ijerph17165655
  6. Development of a new gas chromatographic-mass spectrometry method for the simultaneous analysis of all regulated phthalates in consumer goods vol.100, pp.11, 2020, https://doi.org/10.1080/03067319.2019.1651850
  7. Evaluation of Oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobils) fish at low concentrations vol.268, pp.1, 2021, https://doi.org/10.1016/j.envpol.2020.115896
  8. DEHP Down-Regulates Tshr Gene Expression in Rat Thyroid Tissues and FRTL-5 Rat Thyrocytes: A Potential Mechanism of Thyroid Disruption vol.36, pp.2, 2021, https://doi.org/10.3803/enm.2020.920
  9. Thyroid hypofunction in aging testicular cancer survivors vol.60, pp.11, 2021, https://doi.org/10.1080/0284186x.2021.1958004