DOI QR코드

DOI QR Code

Treatment with Phytoestrogens Reversed Triclosan and Bisphenol A-Induced Anti-Apoptosis in Breast Cancer Cells

  • Lee, Geum-A (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Choi, Kyung-Chul (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University) ;
  • Hwang, Kyung-A (Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University)
  • Received : 2017.08.14
  • Accepted : 2017.10.23
  • Published : 2018.09.01

Abstract

Triclosan (TCS) and bisphenol A (BPA) are endocrine-disrupting chemicals that interfere with the hormone or endocrine system and may cause cancer. Kaempferol (Kaem) and 3,3'-diindolylmethane (DIM) are phytoestrogens that play chemopreventive roles in the inhibition of carcinogenesis and cancer progression. In this study, the influence of TCS, BPA, Kaem, and DIM on proliferation and apoptotic abilities of VM7Luc4E2 breast cancer cells were examined. MTT assay revealed that TCS ($0.1-10{\mu}M$), BPA ($0.1-10{\mu}M$) and E2 ($0.01-0.0001{\mu}M$) induced significant cell proliferation of VM7Luc4E2 cells, which was restored to the control (0.1% DMSO) by co-treatment with Kaem ($30{\mu}M$) or DIM ($15{\mu}M$). Reactive oxygen species (ROS) production assays showed that TCS and BPA inhibited ROS production of VM7Luc4E2 cells similar to E2, but that co-treatment with Kaem or DIM on VM7Luc4E2 cells induced increased ROS production. Based on these results, the effects of TCS, BPA, Kaem, and DIM on protein expression of apoptosis and ROS production-related markers such as Bax and Bcl-xl, as well as endoplasmic reticulum (ER) stress-related markers such as $eIF2{\alpha}$ and CHOP were investigated by Western blot assay. The results revealed that TCS, and BPA induced anti-apoptosis by reducing ROS production and ER stress. However, Kaem and DIM effectively inhibited TCS and BPA-induced anti-apoptotic processes in VM7Luc4E2 cells. Overall, TCS and BPA were revealed to be distinct xenoestrogens that enhanced proliferation and anti-apoptosis, while Kaem and DIM were identified as natural chemopreventive compounds that effectively inhibited breast cancer cell proliferation and increased anti-apoptosis induced by TCS and BPA.

Keywords

References

  1. Abdelrahim, M., Newman, K., Vanderlaag, K., Samudio, I. and Safe, S. (2006) 3,3'-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 27, 717-728. https://doi.org/10.1093/carcin/bgi270
  2. Ahn, H. N., Jeong, S. Y., Bae, G. U., Chang, M., Zhang, D., Liu, X., Pei, Y., Chin, Y. W., Lee, J., Oh, S. R. and Song, Y. S. (2014) Selective estrogen receptor modulation by larrea nitida on MCF-7 cell proliferation and immature rat uterus. Biomol. Ther. (Seoul) 22, 347-354. https://doi.org/10.4062/biomolther.2014.050
  3. Bhat, T. A., Chaudhary, A. K., Kumar, S., O'Malley, J., Inigo, J. R., Kumar, R., Yadav, N. and Chandra, D. (2017) Endoplasmic reticulum-mediated unfolded protein response and mitochondrial apoptosis in cancer. Biochim. Biophys. Acta 1867, 58-66.
  4. Chen, M. Y., Ike, M. and Fujita, M. (2002) Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ. Toxicol. 17, 80-86. https://doi.org/10.1002/tox.10035
  5. Coelingh Bennink, H. J. (2004) Are all estrogens the same? Maturitas 47, 269-275. https://doi.org/10.1016/j.maturitas.2003.11.009
  6. Darbre, P. D. (2006) Environmental oestrogens, cosmetics and breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 20, 121-143. https://doi.org/10.1016/j.beem.2005.09.007
  7. Dinwiddie, M. T., Terry, P. D. and Chen, J. (2014) Recent evidence regarding triclosan and cancer risk. Int. J. Environ. Res. Public Health 11, 2209-2217. https://doi.org/10.3390/ijerph110202209
  8. Elswefy, S. E., Abdallah, F. R., Atteia, H. H., Wahba, A. S. and Hasan, R. A. (2016) Inflammation, oxidative stress and apoptosis cascade implications in bisphenol A-induced liver fibrosis in male rats. Int. J. Exp. Pathol. 97, 369-379. https://doi.org/10.1111/iep.12207
  9. Fang, Y., Zhang, Q., Wang, X., Yang, X., Wang, X., Huang, Z., Jiao, Y. and Wang, J. (2016) Quantitative phosphoproteomics reveals genistein as a modulator of cell cycle and DNA damage response pathways in triple-negative breast cancer cells. Int. J. Oncol. 48, 1016-1028. https://doi.org/10.3892/ijo.2016.3327
  10. Feng, Y., Zhang, P., Zhang, Z., Shi, J., Jiao, Z. and Shao, B. (2016) Endocrine disrupting effects of triclosan on the placenta in pregnant rats. PLoS ONE 11, e0154758. https://doi.org/10.1371/journal.pone.0154758
  11. Fesik, S. W. and Shi, Y. (2001) Structural biology. Controlling the caspases. Science 294, 1477-1478. https://doi.org/10.1126/science.1062236
  12. Fuchs, Y. and Steller, H. (2011) Programmed cell death in animal development and disease. Cell 147, 742-758. https://doi.org/10.1016/j.cell.2011.10.033
  13. Gafar, A. A., Draz, H. M., Goldberg, A. A., Bashandy, M. A., Bakry, S., Khalifa, M. A., AbuShair, W., Titorenko, V. I. and Sanderson, J. T. (2016) Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ 4, e2445. https://doi.org/10.7717/peerj.2445
  14. Galehdar, Z., Swan, P., Fuerth, B., Callaghan, S. M., Park, D. S. and Cregan, S. P. (2010) Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J. Neurosci. 30, 16938-16948. https://doi.org/10.1523/JNEUROSCI.1598-10.2010
  15. Gong, Y., Sohn, H., Xue, L., Firestone, G. L. and Bjeldanes, L. F. (2006) 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells. Cancer Res. 66, 4880-4887. https://doi.org/10.1158/0008-5472.CAN-05-4162
  16. Gross, A., McDonnell, J. M. and Korsmeyer, S. J. (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899-1911. https://doi.org/10.1101/gad.13.15.1899
  17. Guo, H., Ren, F., Zhang, L., Zhang, X., Yang, R., Xie, B., Li, Z., Hu, Z., Duan, Z. and Zhang, J. (2016) Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol. Med. Rep. 13, 2791-2800. https://doi.org/10.3892/mmr.2016.4845
  18. Hilakivi-Clarke, L., Cho, E., Onojafe, I., Raygada, M. and Clarke, R. (1999) Maternal exposure to genistein during pregnancy increases carcinogen-induced mammary tumorigenesis in female rat offspring. Oncol. Rep. 6, 1089-1095.
  19. Hong, Y. H., Uddin, M. H., Jo, U., Kim, B., Song, J., Suh, D. H., Kim, H. S. and Song, Y. S. (2015) ROS accumulation by PEITC Selectively Kills Ovarian Cancer Cells via UPR-mediated apoptosis. Front. Oncol. 5, 167.
  20. Hwang, K. A. and Choi, K. C. (2015) Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms. Nutr. Cancer 67, 796-803. https://doi.org/10.1080/01635581.2015.1040516
  21. Jeong, J. S., Nam, K. T., Lee, B., Pamungkas, A. D., Song, D., Kim, M., Yu, W. J., Lee, J., Jee, S., Park, Y. H. and Lim, K. M. (2017) Lowdose bisphenol A increases bile duct proliferation in juvenile rats: a possible evidence for risk of liver cancer in the exposed population? Biomol. Ther. (Seoul) 25, 545-552. https://doi.org/10.4062/biomolther.2017.148
  22. Kang, N. H., Hwang, K. A., Lee, H. R., Choi, D. W. and Choi, K. C. (2013) Resveratrol regulates the cell viability promoted by $17{\beta}$-estradiol or bisphenol A via down-regulation of the cross-talk between estrogen receptor ${\alpha}$ and insulin growth factor-1 receptor in BG-1 ovarian cancer cells. Food Chem. Toxicol. 59, 373-379. https://doi.org/10.1016/j.fct.2013.06.029
  23. Kim, B. W., Lee, E. R., Min, H. M., Jeong, H. S., Ahn, J. Y., Kim, J. H., Choi, H. Y., Choi, H., Kim, E. Y., Park, S. P. and Cho, S. G. (2008) Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther. 7, 1080-1089.
  24. Kim, C. W., Go, R. E. and Choi, K. C. (2015a) Treatment of BG-1 ovarian cancer cells expressing estrogen receptors with lambda-cyhalothrin and cypermethrin caused a partial estrogenicity via an estrogen receptor-dependent pathway. Toxicol. Res. 31, 331-337. https://doi.org/10.5487/TR.2015.31.4.331
  25. Kim, S. H., Hwang, K. A. and Choi, K. C. (2016) Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem. 28, 70-82. https://doi.org/10.1016/j.jnutbio.2015.09.027
  26. Kim, S. H., Kim, C. W., Jeon, S. Y., Go, R. E., Hwang, K. A. and Choi, K. C. (2014) Chemopreventive and chemotherapeutic effects of genistein, a soy isoflavone, upon cancer development and progression in preclinical animal models. Lab. Anim. Res. 30, 143-150. https://doi.org/10.5625/lar.2014.30.4.143
  27. Kim, Y. S., Choi, K. C. and Hwang, K. A. (2015b) Genistein suppressed epithelial-mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-${\beta}$ signaling pathway. Phytomedicine 22, 993-999. https://doi.org/10.1016/j.phymed.2015.08.003
  28. Kitamura, M. and Hiramatsu, N. (2010) The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 23, 941-950. https://doi.org/10.1007/s10534-010-9296-2
  29. Kwon, Y. J., Jung, J. J., Park, N. H., Ye, D. J., Kim, D., Moon, A. and Chun, Y. J. (2013) Annexin a5 as a new potential biomarker for Cisplatin-induced toxicity in human kidney epithelial cells. Biomol. Ther. (Seoul) 21, 190-195. https://doi.org/10.4062/biomolther.2013.026
  30. Lee, G. A., Choi, K. C. and Hwang, K. A. (2017) Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol. 49, 48-57. https://doi.org/10.1016/j.etap.2016.11.016
  31. Lee, G. A., Hwang, K. A. and Choi, K. C. (2016) Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis. Toxins (Basel) 8. pii: E162.
  32. Lee, H. R., Hwang, K. A., Park, M. A., Yi, B. R., Jeung, E. B. and Choi, K. C. (2012) Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int. J. Mol. Med. 29, 883-890.
  33. Lee, H. S., Park, E. J., Oh, J. H., Moon, G., Hwang, M. S., Kim, S. Y., Shin, M. K., Koh, Y. H., Suh, J. H., Kang, H. S., Jeon, J. H., Rhee, G. S. and Hong, J. H. (2014) Bisphenol A exerts estrogenic effects by modulating CDK1/2 and p38 MAP kinase activity. Biosci. Biotechnol. Biochem. 78, 1371-1375. https://doi.org/10.1080/09168451.2014.921557
  34. Lee, J. and Kim, J. H. (2016) Kaempferol inhibits pancreatic cancer cell growth and migration through the blockade of EGFR-related pathway in vitro. PLoS ONE 11, e0155264. https://doi.org/10.1371/journal.pone.0155264
  35. Lewis-Wambi, J. S. and Jordan, V. C. (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast Cancer Res. 11, 206. https://doi.org/10.1186/bcr2255
  36. Li, Y., Arao, Y., Hall, J. M., Burkett, S., Liu, L., Gerrish, K., Cavailles, V. and Korach, K. S. (2014) Research resource: STR DNA profile and gene expression comparisons of human BG-1 cells and a BG-1/MCF-7 clonal variant. Mol. Endocrinol. 28, 2072-2081. https://doi.org/10.1210/me.2014-1229
  37. Liao, W., Chen, L., Ma, X., Jiao, R., Li, X. and Wang, Y. (2016) Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur. J. Med. Chem. 114, 24-32. https://doi.org/10.1016/j.ejmech.2016.02.045
  38. Missmer, S. A., Eliassen, A. H., Barbieri, R. L. and Hankinson, S. E. (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J. Natl. Cancer Inst. 96, 1856-1865. https://doi.org/10.1093/jnci/djh336
  39. Park, J. E., Piao, M. J., Kang, K. A., Shilnikova, K., Hyun, Y. J., Oh, S. K., Jeong, Y. J., Chae, S. and Hyun, J. W. (2017) A benzylideneacetophenone derivative induces apoptosis of radiation-resistant human breast cancer cells via oxidative stress. Biomol. Ther. (Seoul) 25, 404-410. https://doi.org/10.4062/biomolther.2017.010
  40. Park, M. A., Hwang, K. A. and Choi, K. C. (2011) Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Lab. Anim. Res. 27, 265-273. https://doi.org/10.5625/lar.2011.27.4.265
  41. Russo, M., Russo, G. L., Daglia, M., Kasi, P. D., Ravi, S., Nabavi, S. F. and Nabavi, S. M. (2016) Understanding genistein in cancer: The "good" and the "bad" effects: a review. Food Chem. 196, 589-600. https://doi.org/10.1016/j.foodchem.2015.09.085
  42. Sakamoto, T., Horiguchi, H., Oguma, E. and Kayama, F. (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J. Nutr. Biochem. 21, 856-864. https://doi.org/10.1016/j.jnutbio.2009.06.010
  43. Santen, R. J., Boyd, N. F., Chlebowski, R. T., Cummings, S., Cuzick, J., Dowsett, M., Easton, D., Forbes, J. F., Key, T., Hankinson, S. E., Howell, A. and Ingle, J. (2007) Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocr. Relat. Cancer 14, 169-187. https://doi.org/10.1677/ERC-06-0045
  44. Santos, U. P., Campos, J. F., Torquato, H. F., Paredes-Gamero, E. J., Carollo, C. A., Estevinho, L. M., de Picoli Souza, K. and Dos Santos, E. L. (2016) Antioxidant, antimicrobial and cytotoxic properties as well as the phenolic content of the extract from hancornia speciosa gomes. PLoS ONE 11, e0167531. https://doi.org/10.1371/journal.pone.0167531
  45. Selvaraj, S., Sun, Y., Sukumaran, P. and Singh, B. B. (2016) Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol. Carcinog. 55, 818-831. https://doi.org/10.1002/mc.22324
  46. Shanle, E. K. and Xu, W. (2011) Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem. Res. Toxicol. 24, 6-19. https://doi.org/10.1021/tx100231n
  47. Shi, Y. (2001) A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol. 8, 394-401. https://doi.org/10.1038/87548
  48. Soltys, B. J., Falah, M. and Gupta, R. S. (1996) Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J. Cell Sci. 109, 1909-1917.
  49. Stachon, T., Wang, J., Song, X., Langenbucher, A., Seitz, B. and Szentmary, N. (2015) Impact of crosslinking/riboflavin-UVA-photodynamic inactivation on viability, apoptosis and activation of human keratocytes in vitro. J. Biomed. Res. 29, 321-325.
  50. Sun, S., Han, J., Ralph, W. M., Jr., Chandrasekaran, A., Liu, K., Auborn, K. J. and Carter, T. H. (2004) Endoplasmic reticulum stress as a correlate of cytotoxicity in human tumor cells exposed to diindolylmethane in vitro. Cell Stress Chaperones 9, 76-87. https://doi.org/10.1379/1466-1268(2004)009<0076:ERSAAC>2.0.CO;2
  51. Tatsimo, S. J., Tamokou Jde, D., Havyarimana, L., Csupor, D., Forgo, P., Hohmann, J., Kuiate, J. R. and Tane, P. (2012) Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum. BMC Res. Notes 5, 158. https://doi.org/10.1186/1756-0500-5-158
  52. Verhoeven, D. T., Goldbohm, R. A., van Poppel, G., Verhagen, H. and van den Brandt, P. A. (1996) Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomarkers Prev. 5, 733-748.
  53. Wang, S. and Kaufman, R. J. (2012) The impact of the unfolded protein response on human disease. J. Cell Biol. 197, 857-867. https://doi.org/10.1083/jcb.201110131
  54. Yang, B., Xu, Y., Hu, Y., Luo, Y., Lu, X., Tsui, C. K., Lu, L. and Liang, X. (2016) Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress. Biomed. Pharmacother. 84, 845-852. https://doi.org/10.1016/j.biopha.2016.10.015
  55. Yin, L., Dai, Y., Cui, Z., Jiang, X., Liu, W., Han, F., Lin, A., Cao, J. and Liu, J. (2017) The regulation of cellular apoptosis by the ROS-triggered PERK/$EIF2{\alpha}$/chop pathway plays a vital role in bisphenol A-induced male reproductive toxicity. Toxicol. Appl. Pharmacol. 314, 98-108. https://doi.org/10.1016/j.taap.2016.11.013

Cited by

  1. Triclosan: An Update on Biochemical and Molecular Mechanisms vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/1607304
  2. Kaempferol: A Key Emphasis to Its Anticancer Potential vol.24, pp.12, 2018, https://doi.org/10.3390/molecules24122277
  3. The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress vol.182, pp.None, 2019, https://doi.org/10.1016/j.ecoenv.2019.109391
  4. Bisphenols and Risk of Breast Cancer: A Narrative Review of the Impact of Diet and Bioactive Food Components vol.7, pp.None, 2018, https://doi.org/10.3389/fnut.2020.581388
  5. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S vol.21, pp.10, 2018, https://doi.org/10.3390/ijms21103529
  6. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health vol.38, pp.3, 2020, https://doi.org/10.1080/26896583.2020.1809286
  7. Bioactive Compounds and Metabolites from Grapes and Red Wine in Breast Cancer Chemoprevention and Therapy vol.25, pp.15, 2018, https://doi.org/10.3390/molecules25153531
  8. Triclosan induces apoptosis in Burkitt lymphoma-derived BJAB cells through caspase and JNK/MAPK pathways vol.26, pp.1, 2021, https://doi.org/10.1007/s10495-020-01650-0
  9. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy vol.30, pp.3, 2021, https://doi.org/10.1007/s10068-021-00899-8
  10. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts vol.22, pp.16, 2018, https://doi.org/10.3390/ijms22168798
  11. Endocrine disrupting chemicals and their detection in an IVF laboratory vol.9, pp.4, 2018, https://doi.org/10.2478/acb-2021-0023