DOI QR코드

DOI QR Code

Two-Cell Spheroid Angiogenesis Assay System Using Both Endothelial Colony Forming Cells and Mesenchymal Stem Cells

  • Shah, Sajita (College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University) ;
  • Kang, Kyu-Tae (College of Pharmacy, Duksung Innovative Drug Center, Duksung Women's University)
  • Received : 2018.07.19
  • Accepted : 2018.08.08
  • Published : 2018.09.01

Abstract

Most angiogenesis assays are performed using endothelial cells. However, blood vessels are composed of two cell types: endothelial cells and pericytes. Thus, co-culture of two vascular cells should be employed to evaluate angiogenic properties. Here, we developed an in vitro 3-dimensional angiogenesis assay system using spheroids formed by two human vascular precursors: endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs). ECFCs, MSCs, or ECFCs+MSCs were cultured to form spheroids. Sprout formation from each spheroid was observed for 24 h by real-time cell recorder. Sprout number and length were higher in ECFC+MSC spheroids than ECFC-only spheroids. No sprouts were observed in MSC-only spheroids. Sprout formation by ECFC spheroids was increased by treatment with vascular endothelial growth factor (VEGF) or combination of VEGF and fibroblast growth factor-2 (FGF-2). Interestingly, there was no further increase in sprout formation by ECFC+MSC spheroids in response to VEGF or VEGF+FGF-2, suggesting that MSCs stimulate sprout formation by ECFCs. Immuno-fluorescent labeling technique revealed that MSCs surrounded ECFC-mediated sprout structures. We tested vatalanib, VEGF inhibitor, using ECFC and ECFC+MSC spheroids. Vatalanib significantly inhibited sprout formation in both spheroids. Of note, the $IC_{50}$ of vatalanib in ECFC+MSC spheroids at 24 h was $4.0{\pm}0.40{\mu}M$, which are more correlated with the data of previous animal studies when compared with ECFC spheroids ($0.2{\pm}0.03{\mu}M$). These results suggest that ECFC+MSC spheroids generate physiologically relevant sprout structures composed of two types of vascular cells, and will be an effective pre-clinical in vitro assay model to evaluate pro- or anti-angiogenic property.

Keywords

References

  1. Arnaoutova, I. and Kleinman, H. K. (2010) In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628-635. https://doi.org/10.1038/nprot.2010.6
  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G. and Isner, J. M. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964-967. https://doi.org/10.1126/science.275.5302.964
  3. Ayala-Cuellar, A. P., Kang, J. H., Jeung, E. B. and Choi, K. C. (2018) Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Ther. (Seoul) doi: 10.4062/biomolther.2017.260 [Epub ahead of print].
  4. Banerjee, S., Zvelebil, M., Furet, P., Mueller-Vieira, U., Evans, D. B., Dowsett, M. and Martin, L. A. (2009) The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase. Cancer Res. 69, 4716-4723. https://doi.org/10.1158/0008-5472.CAN-08-4711
  5. Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389-395. https://doi.org/10.1038/74651
  6. Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature 407, 249-257. https://doi.org/10.1038/35025220
  7. Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S. andriolo, G., Sun, B., Zheng, B. and Zhang, L. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313. https://doi.org/10.1016/j.stem.2008.07.003
  8. Delia, D., Lampugnani, M., Resnati, M., Dejana, E., Aiello, A., Fontanella, E., Soligo, D., Pierotti, M. and Greaves, M. (1993) CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood 81, 1001-1008.
  9. Detry, B., Bruyere, F., Erpicum, C., Paupert, J., Lamaye, F., Maillard, C., Lenoir, B., Foidart, J.-M., Thiry, M. and Noel, A. (2011) Digging deeper into lymphatic vessel formation in vitro and in vivo. BMC Cell Biol. 12, 29. https://doi.org/10.1186/1471-2121-12-29
  10. Fadini, G. P., Losordo, D. and Dimmeler, S. (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 110, 624-637. https://doi.org/10.1161/CIRCRESAHA.111.243386
  11. Fina, L., Molgaard, H. V., Robertson, D., Bradley, N. J., Monaghan, P., Delia, D., Sutherland, D. R., Baker, M. A. and Greaves, M. F. (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75, 2417-2426.
  12. Foubert, P., Matrone, G., Souttou, B., Lere-Dean, C., Barateau, V., Plouet, J., Le Ricousse-Roussanne, S., Levy, B. I., Silvestre, J.-S. and Tobelem, G. (2008) Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell-based therapy. Circ. Res. 103, 751-760. https://doi.org/10.1161/CIRCRESAHA.108.175083
  13. Friedrich, J., Seidel, C., Ebner, R. and Kunz-Schughart, L. A. (2009) Spheroid-based drug screen: considerations and practical approach. Nat. Protoc. 4, 309-324. https://doi.org/10.1038/nprot.2008.226
  14. Gautier, B., Miteva, M. A., Goncalves, V., Huguenot, F., Coric, P., Bouaziz, S., Seijo, B., Gaucher, J.-F., Broutin, I. and Garbay, C. (2011) Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening. Chem. Biol. 18, 1631-1639. https://doi.org/10.1016/j.chembiol.2011.10.016
  15. Grellier, M., Ferreira-Tojais, N., Bourget, C., Bareille, R., Guillemot, F. and Amedee, J. (2009) Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J. Cell Biol. 106, 390-398.
  16. Gumkowski, F., Kaminska, G., Kaminski, M., Morrissey, L. W. and Auerbach, R. (1987) Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 24, 11-23.
  17. Gupta, P. K., Chullikana, A., Parakh, R., Desai, S., Das, A., Gottipamula, S., Krishnamurthy, S., Anthony, N., Pherwani, A. and Majumdar, A. S. (2013) A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J. Transl. Med. 11, 143. https://doi.org/10.1186/1479-5876-11-143
  18. Hada, K., Suda, A., Asoh, K., Tsukuda, T., Hasegawa, M., Sato, Y., Ogawa, K., Kuramoto, S., Aoki, Y. and Shimma, N. (2012) Angiogenesis inhibitors identified by cell-based high-throughput screening: Synthesis, structure-activity relationships and biological evaluation of 3-[(E)-styryl] benzamides that specifically inhibit endothelial cell proliferation. Bioorg. Med. Chem. 20, 1442-1460. https://doi.org/10.1016/j.bmc.2011.12.058
  19. Hutmacher, D. W. (2010) Biomaterials offer cancer research the third dimension. Nat. Mater. 9, 90-93. https://doi.org/10.1038/nmat2619
  20. Ingram, D. A., Mead, L. E., Tanaka, H., Meade, V., Fenoglio, A., Mortell, K., Pollok, K., Ferkowicz, M. J., Gilley, D. and Yoder, M. C. (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104, 2752-2760. https://doi.org/10.1182/blood-2004-04-1396
  21. Jaganathan, H., Gage, J., Leonard, F., Srinivasan, S., Souza, G. R., Dave, B. and Godin, B. (2014) Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci. Rep. 4, 6468.
  22. Kang, K. T., Coggins, M., Xiao, C., Rosenzweig, A. and Bischoff, J. (2013) Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis 16, 773-784. https://doi.org/10.1007/s10456-013-9354-9
  23. Korff, T. and Augustin, H. G. (1998) Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341-1352. https://doi.org/10.1083/jcb.143.5.1341
  24. Korff, T. and Augustin, H. G. (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112, 3249-3258.
  25. Kwon, Y. H., Lee, J. H., Jung, S. Y., Kim, J. W., Lee, S. H., Lee, D. H., Lee, K. S., Lee, B. Y. and Kwon, S. M. (2012) Phloroglucinol inhibits the in vitro differentiation potential of CD34 positive cells into endothelial progenitor cells. Biomol. Ther. (Seoul) 20, 158-164. https://doi.org/10.4062/biomolther.2012.20.2.158
  26. Lara-Hernandez, R., Lozano-Vilardell, P., Blanes, P., Torreguitart-Mirada, N., Galmes, A. and Besalduch, J. (2010) Safety and efficacy of therapeutic angiogenesis as a novel treatment in patients with critical limb ischemia. Ann. Vasc. Surg. 24, 287-294. https://doi.org/10.1016/j.avsg.2009.10.012
  27. Lee, J. H., Han, Y. S. and Lee, S. H. (2016) Long-duration threedimensional spheroid culture promotes angiogenic activities of adipose-derived mesenchymal stem cells. Biomol. Ther. (Seoul) 24, 260-267. https://doi.org/10.4062/biomolther.2015.146
  28. Lin, R. Z., Moreno-Luna, R., Li, D., Jaminet, S. C., Greene, A. K. and Melero-Martin, J. M. (2014) Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl. Acad. Sci. U.S.A. 111, 10137-10142. https://doi.org/10.1073/pnas.1405388111
  29. Lu, P., Weaver, V. M. and Werb, Z. (2012) The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395-406. https://doi.org/10.1083/jcb.201102147
  30. Lutolf, M.P., Gilbert, P.M. and Blau, H.M. (2009) Designing materials to direct stem-cell fate. Nature 462, 433-441. https://doi.org/10.1038/nature08602
  31. Melero-Martin, J. M., De Obaldia, M. E., Kang, S.-Y., Khan, Z. A., Yuan, L., Oettgen, P. and Bischoff, J. (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 103, 194-202. https://doi.org/10.1161/CIRCRESAHA.108.178590
  32. Melero-Martin, J. M., Khan, Z. A., Picard, A., Wu, X., Paruchuri, S. and Bischoff, J. (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761-4768. https://doi.org/10.1182/blood-2006-12-062471
  33. Murasawa, S. and Asahara, T. (2005) Endothelial progenitor cells for vasculogenesis. Physiology (Bethesda) 20, 36-42.
  34. Pampaloni, F., Reynaud, E. G. and Stelzer, E. H. (2007) The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839-845. https://doi.org/10.1038/nrm2236
  35. Paupert, J., Sounni, N. E. and Noel, A. (2011) Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol. Aspects Med. 32, 146-158. https://doi.org/10.1016/j.mam.2011.04.002
  36. Rafii, S., Lyden, D., Benezra, R., Hattori, K. and Heissig, B. (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat. Rev. Cancer 2, 826-835. https://doi.org/10.1038/nrc925
  37. Reinisch, A., Hofmann, N. A., Obenauf, A. C., Kashofer, K., Rohde, E., Schallmoser, K., Flicker, K., Lanzer, G., Linkesch, W. and Speicher, M. R. (2009) Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo. Blood 113, 6716-6725. https://doi.org/10.1182/blood-2008-09-181362
  38. Sanz-Nogues, C. and O'Brien, T. (2016) In vitro models for assessing therapeutic angiogenesis. Drug Discov. Today 21, 1495-1503. https://doi.org/10.1016/j.drudis.2016.05.016
  39. Shi, S. and Gronthos, S. (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696-704. https://doi.org/10.1359/jbmr.2003.18.4.696
  40. Wood, J. M., Bold, G., Buchdunger, E., Cozens, R., Ferrari, S., Frei, J., Hofmann, F., Mestan, J., Mett, H. and O'Reilly, T. (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178-2189.

Cited by

  1. New artery of knowledge: 3D models of angiogenesis vol.1, pp.1, 2018, https://doi.org/10.1530/vb-19-0026
  2. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells vol.38, pp.1, 2019, https://doi.org/10.1186/s13046-019-1225-9
  3. Spheroid Coculture of Human Gingiva-Derived Progenitor Cells With Endothelial Cells in Modified Platelet Lysate Hydrogels vol.9, pp.None, 2018, https://doi.org/10.3389/fbioe.2021.739225
  4. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease vol.128, pp.12, 2021, https://doi.org/10.1161/circresaha.121.318265
  5. Heterotypic Multicellular Spheroids as Experimental and Preclinical Models of Sprouting Angiogenesis vol.11, pp.1, 2018, https://doi.org/10.3390/biology11010018