References
- Abdul-Wajid, S., Morales-Diaz, H., Khairallah, S. M. and Smith, W. C. (2015) T-type calcium channel regulation of neural tube closure and EphrinA/EPHA expression. Cell Rep. 13, 829-839. https://doi.org/10.1016/j.celrep.2015.09.035
- Assandri, R., Egger, M., Gassmann, M., Niggli, E., Bauer, C., Forster, I. and Gorlach, A. (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J. Physiol. 516, 343-352. https://doi.org/10.1111/j.1469-7793.1999.0343v.x
- Cazade, M., Bidaud, I., Lory, P. and Chemin, J. (2017) Activity-dependent regulation of T-type calcium channels by submembrane calcium ions. Elife 6, e22331. https://doi.org/10.7554/eLife.22331
- Chemin, J., Monteil, A., Briquaire, C., Richard, S., Perez-Reyes, E., Nargeot, J. and Lory, P. (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett. 478, 166-172. https://doi.org/10.1016/S0014-5793(00)01832-9
- Chen, W. K., Liu, I. Y., Chang, Y. T., Chen, Y. C., Chen, C. C., Yen, C. T., Shin, H. S. and Chen, C. C. (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J. Neurosci. 30, 10360-10368. https://doi.org/10.1523/JNEUROSCI.1041-10.2010
- Cheong, E. and Shin, H. S. (2013) T-type Ca2+ channels in normal and abnormal brain functions. Physiol. Rev. 93, 961-992. https://doi.org/10.1152/physrev.00010.2012
- Coulon, P., Herr, D., Kanyshkova, T., Meuth, P., Budde, T. and Pape, H. C. (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46, 333-346. https://doi.org/10.1016/j.ceca.2009.09.005
- D'Ascenzo, M., Piacentini, R., Casalbore, P., Budoni, M., Pallini, R., Azzena, G. B. and Grassi, C. (2006) Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur. J. Neurosci. 23, 935-944. https://doi.org/10.1111/j.1460-9568.2006.04628.x
- Dziegielewska, B., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2014a) T-type Ca2+ channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol. Cancer Res. 12, 348-358. https://doi.org/10.1158/1541-7786.MCR-13-0485
- Dziegielewska, B., Gray, L. S. and Dziegielewski, J. (2014b) T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch. 466, 801-810. https://doi.org/10.1007/s00424-014-1444-z
- Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983-8998. https://doi.org/10.1038/sj.onc.1207115
- Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S. H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C. H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3beta/beta-catenin pathway. Neuropharmacology 63, 1028-1041. https://doi.org/10.1016/j.neuropharm.2012.07.028
- Harraz, O. F., Brett, S. E., Zechariah, A., Romero, M., Puglisi, J. L., Wilson, S. M. and Welsh, D. G. (2015) Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler. Thromb. Vasc. Biol. 35, 1843-1851. https://doi.org/10.1161/ATVBAHA.115.305736
- Hirooka, K., Bertolesi, G. E., Kelly, M. E., Denovan-Wright, E. M., Sun, X., Hamid, J., Zamponi, G. W., Juhasz, A. E., Haynes, L. W. and Barnes, S. (2002) T-type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J. Neurophysiol. 88, 196-205. https://doi.org/10.1152/jn.2002.88.1.196
- Huang, L., Keyser, B. M., Tagmose, T. M., Hansen, J. B., Taylor, J. T., Zhuang, H., Zhang, M., Ragsdale, D. S. and Li, M. (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino) ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J. Pharmacol. Exp. Ther. 309, 193-199. https://doi.org/10.1124/jpet.103.060814
- Huang, W., Lu, C., Wu, Y., Ouyang, S. and Chen, Y. (2015) T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. J. Exp. Clin. Cancer Res. 34, 54. https://doi.org/10.1186/s13046-015-0171-4
- Iftinca, M. C. and Zamponi, G. W. (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol. Sci. 30, 32-40. https://doi.org/10.1016/j.tips.2008.10.004
- Jacobs, K. M., Bhave, S. R., Ferraro, D. J., Jaboin, J. J., Hallahan, D. E. and Thotala, D. (2012) GSK-3beta: a bifunctional role in cell death pathways. Int. J. Cell Biol. 2012, 930710.
- Kim, D., Song, I., Keum, S., Lee, T., Jeong, M. J., Kim, S. S., McEnery, M. W. and Shin, H. S. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31, 35-45. https://doi.org/10.1016/S0896-6273(01)00343-9
- Kim, J. W., Lee, S. H., Ko, H. M., Kwon, K. J., Cho, K. S., Choi, C. S., Park, J. H., Kim, H. Y., Lee, J., Han, S. H., Ignarro, L. J., Cheong, J. H., Kim, W. K. and Shin, C. Y. (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem. Int. 58, 423-433. https://doi.org/10.1016/j.neuint.2010.12.020
- Kitchens, S. A., Burch, J. and Creazzo, T. L. (2003) T-type Ca2+ current contribution to Ca2+-induced Ca2+ release in developing myocardium. J. Mol. Cell. Cardiol. 35, 515-523. https://doi.org/10.1016/S0022-2828(03)00075-0
- Kopecky, B. J., Liang, R. and Bao, J. (2014) T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 466, 757-765. https://doi.org/10.1007/s00424-014-1454-x
- Lee, J. H., Gomora, J. C., Cribbs, L. L. and Perez-Reyes, E. (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J. 77, 3034-3042. https://doi.org/10.1016/S0006-3495(99)77134-1
- Martin, R. L., Lee, J. H., Cribbs, L. L., Perez-Reyes, E. and Hanck, D. A. (2000) Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther. 295, 302-308.
- Oguri, A., Tanaka, T., Iida, H., Meguro, K., Takano, H., Oonuma, H., Nishimura, S., Morita, T., Yamasoba, T., Nagai, R. and Nakajima, T. (2010) Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am. J. Physiol. Cell Physiol. 298, C1414-C1423. https://doi.org/10.1152/ajpcell.00488.2009
- Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S. and Wurster, R. D. (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37, 105-119. https://doi.org/10.1016/j.ceca.2004.07.002
- Panner, A. and Wurster, R. D. (2006) T-type calcium channels and tumor proliferation. Cell Calcium. 40, 253-259. https://doi.org/10.1016/j.ceca.2006.04.029
- Perez-Reyes, E. (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117-161. https://doi.org/10.1152/physrev.00018.2002
- Rodriguez-Gomez, J. A., Levitsky, K. L. and Lopez-Barneo, J. (2012) T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal. Am. J. Physiol. Cell Physiol. 302, C494-504. https://doi.org/10.1152/ajpcell.00267.2011
- Rossier, M. F. (2016) T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis. Front. Endocrinol. (Lausanne) 7, 43.
- Splawski, I., Yoo, D. S., Stotz, S. C., Cherry, A., Clapham, D. E. and Keating, M. T. (2006) CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281, 22085-22091. https://doi.org/10.1074/jbc.M603316200
- Strom, S. P., Stone, J. L., Ten Bosch, J. R., Merriman, B., Cantor, R. M., Geschwind, D. H. and Nelson, S. F. (2010) High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol. Psychiatry 15, 996-1005. https://doi.org/10.1038/mp.2009.41
- Taylor, J. T., Huang, L., Pottle, J. E., Liu, K., Yang, Y., Zeng, X., Keyser, B. M., Agrawal, K. C., Hansen, J. B. and Li, M. (2008) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267, 116-124. https://doi.org/10.1016/j.canlet.2008.03.032
- Valerie, N. C., Dziegielewska, B., Hosing, A. S., Augustin, E., Gray, L. S., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2013) Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem. Pharmacol. 85, 888-897. https://doi.org/10.1016/j.bcp.2012.12.017
- Viana, F., Van den Bosch, L., Missiaen, L., Vandenberghe, W., Droogmans, G., Nilius, B. and Robberecht, W. (1997) Mibefradil (Ro 40-5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22, 299-311. https://doi.org/10.1016/S0143-4160(97)90068-3
- Watanabe, M., Ueda, T., Shibata, Y., Kumamoto, N., Shimada, S. and Ugawa, S. (2015) Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE 10, e0127572. https://doi.org/10.1371/journal.pone.0127572
- Westmark, C. J. and Malter, J. S. (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5, e52. https://doi.org/10.1371/journal.pbio.0050052
- Wu, S., Zhang, M., Vest, P. A., Bhattacharjee, A., Liu, L. and Li, M. (2000) A mibefradil metabolite is a potent intracellular blocker of L-type Ca(2+) currents in pancreatic beta-cells. J. Pharmacol. Exp. Ther. 292, 939-943.
- Xiang, Z., Thompson, A. D., Brogan, J. T., Schulte, M. L., Melancon, B. J., Mi, D., Lewis, L. M., Zou, B., Yang, L., Morrison, R., Santomango, T., Byers, F., Brewer, K., Aldrich, J. S., Yu, H., Dawson, E. S., Li, M., McManus, O., Jones, C. K., Daniels, J. S., Hopkins, C. R., Xie, X. S., Conn, P. J., Weaver, C. D. and Lindsley, C. W. (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson's disease. ACS Chem. Neurosci. 2, 730-742. https://doi.org/10.1021/cn200090z
- Zamponi, G. W. (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 15, 19-34. https://doi.org/10.1038/nrd.2015.5
Cited by
- TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex vol.132, pp.None, 2018, https://doi.org/10.1016/j.nbd.2019.104539
- Role of T-type Calcium Channels in Regulating Neuronal Function vol.140, pp.10, 2018, https://doi.org/10.1248/yakushi.20-00138
- Genetic T-type calcium channelopathies vol.57, pp.1, 2020, https://doi.org/10.1136/jmedgenet-2019-106163
- Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid vol.28, pp.5, 2020, https://doi.org/10.4062/biomolther.2020.027
- Cav3.1 t‐type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus vol.232, pp.1, 2018, https://doi.org/10.1111/apha.13613
- Deciphering the role of T‐type calcium channels in regulating adult hippocampal neurogenesis vol.232, pp.1, 2018, https://doi.org/10.1111/apha.13643