DOI QR코드

DOI QR Code

T-Type Calcium Channels Are Required to Maintain Viability of Neural Progenitor Cells

  • Kim, Ji-Woon (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Oh, Hyun Ah (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Lee, Sung Hoon (College of Pharmacy, Chung-Ang University) ;
  • Kim, Ki Chan (KU Open Innovation Center and IBST, Konkuk University) ;
  • Eun, Pyung Hwa (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Ko, Mee Jung (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Gonzales, Edson Luck T. (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Seung, Hana (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Kim, Seonmin (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University) ;
  • Bahn, Geon Ho (Department of Neuropsychiatry, School of Medicine, Kyung Hee University) ;
  • Shin, Chan Young (Department of Pharmacology and Department of Advanced Translational Medicine, School of Medicine, Konkuk University)
  • Received : 2017.11.01
  • Accepted : 2017.11.29
  • Published : 2018.09.01

Abstract

T-type calcium channels are low voltage-activated calcium channels that evoke small and transient calcium currents. Recently, T-type calcium channels have been implicated in neurodevelopmental disorders such as autism spectrum disorder and neural tube defects. However, their function during embryonic development is largely unknown. Here, we investigated the function and expression of T-type calcium channels in embryonic neural progenitor cells (NPCs). First, we compared the expression of T-type calcium channel subtypes (CaV3.1, 3.2, and 3.3) in NPCs and differentiated neural cells (neurons and astrocytes). We detected all subtypes in neurons but not in astrocytes. In NPCs, CaV3.1 was the dominant subtype, whereas CaV3.2 was weakly expressed, and CaV3.3 was not detected. Next, we determined CaV3.1 expression levels in the cortex during early brain development. Expression levels of CaV3.1 in the embryonic period were transiently decreased during the perinatal period and increased at postnatal day 11. We then pharmacologically blocked T-type calcium channels to determine the effects in neuronal cells. The blockade of T-type calcium channels reduced cell viability, and induced apoptotic cell death in NPCs but not in differentiated astrocytes. Furthermore, blocking T-type calcium channels rapidly reduced AKT-phosphorylation (Ser473) and $GSK3{\beta}$-phosphorylation (Ser9). Our results suggest that T-type calcium channels play essential roles in maintaining NPC viability, and T-type calcium channel blockers are toxic to embryonic neural cells, and may potentially be responsible for neurodevelopmental disorders.

Keywords

References

  1. Abdul-Wajid, S., Morales-Diaz, H., Khairallah, S. M. and Smith, W. C. (2015) T-type calcium channel regulation of neural tube closure and EphrinA/EPHA expression. Cell Rep. 13, 829-839. https://doi.org/10.1016/j.celrep.2015.09.035
  2. Assandri, R., Egger, M., Gassmann, M., Niggli, E., Bauer, C., Forster, I. and Gorlach, A. (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J. Physiol. 516, 343-352. https://doi.org/10.1111/j.1469-7793.1999.0343v.x
  3. Cazade, M., Bidaud, I., Lory, P. and Chemin, J. (2017) Activity-dependent regulation of T-type calcium channels by submembrane calcium ions. Elife 6, e22331. https://doi.org/10.7554/eLife.22331
  4. Chemin, J., Monteil, A., Briquaire, C., Richard, S., Perez-Reyes, E., Nargeot, J. and Lory, P. (2000) Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett. 478, 166-172. https://doi.org/10.1016/S0014-5793(00)01832-9
  5. Chen, W. K., Liu, I. Y., Chang, Y. T., Chen, Y. C., Chen, C. C., Yen, C. T., Shin, H. S. and Chen, C. C. (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J. Neurosci. 30, 10360-10368. https://doi.org/10.1523/JNEUROSCI.1041-10.2010
  6. Cheong, E. and Shin, H. S. (2013) T-type Ca2+ channels in normal and abnormal brain functions. Physiol. Rev. 93, 961-992. https://doi.org/10.1152/physrev.00010.2012
  7. Coulon, P., Herr, D., Kanyshkova, T., Meuth, P., Budde, T. and Pape, H. C. (2009) Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release. Cell Calcium 46, 333-346. https://doi.org/10.1016/j.ceca.2009.09.005
  8. D'Ascenzo, M., Piacentini, R., Casalbore, P., Budoni, M., Pallini, R., Azzena, G. B. and Grassi, C. (2006) Role of L-type Ca2+ channels in neural stem/progenitor cell differentiation. Eur. J. Neurosci. 23, 935-944. https://doi.org/10.1111/j.1460-9568.2006.04628.x
  9. Dziegielewska, B., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2014a) T-type Ca2+ channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38-MAPK in colon cancer cells. Mol. Cancer Res. 12, 348-358. https://doi.org/10.1158/1541-7786.MCR-13-0485
  10. Dziegielewska, B., Gray, L. S. and Dziegielewski, J. (2014b) T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch. 466, 801-810. https://doi.org/10.1007/s00424-014-1444-z
  11. Franke, T. F., Hornik, C. P., Segev, L., Shostak, G. A. and Sugimoto, C. (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22, 8983-8998. https://doi.org/10.1038/sj.onc.1207115
  12. Go, H. S., Kim, K. C., Choi, C. S., Jeon, S. J., Kwon, K. J., Han, S. H., Lee, J., Cheong, J. H., Ryu, J. H., Kim, C. H., Ko, K. H. and Shin, C. Y. (2012) Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3beta/beta-catenin pathway. Neuropharmacology 63, 1028-1041. https://doi.org/10.1016/j.neuropharm.2012.07.028
  13. Harraz, O. F., Brett, S. E., Zechariah, A., Romero, M., Puglisi, J. L., Wilson, S. M. and Welsh, D. G. (2015) Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR-BKCa axis. Arterioscler. Thromb. Vasc. Biol. 35, 1843-1851. https://doi.org/10.1161/ATVBAHA.115.305736
  14. Hirooka, K., Bertolesi, G. E., Kelly, M. E., Denovan-Wright, E. M., Sun, X., Hamid, J., Zamponi, G. W., Juhasz, A. E., Haynes, L. W. and Barnes, S. (2002) T-type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J. Neurophysiol. 88, 196-205. https://doi.org/10.1152/jn.2002.88.1.196
  15. Huang, L., Keyser, B. M., Tagmose, T. M., Hansen, J. B., Taylor, J. T., Zhuang, H., Zhang, M., Ragsdale, D. S. and Li, M. (2004) NNC 55-0396 [(1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino) ethyl)-6-fluoro-1,2, 3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels. J. Pharmacol. Exp. Ther. 309, 193-199. https://doi.org/10.1124/jpet.103.060814
  16. Huang, W., Lu, C., Wu, Y., Ouyang, S. and Chen, Y. (2015) T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines. J. Exp. Clin. Cancer Res. 34, 54. https://doi.org/10.1186/s13046-015-0171-4
  17. Iftinca, M. C. and Zamponi, G. W. (2009) Regulation of neuronal T-type calcium channels. Trends Pharmacol. Sci. 30, 32-40. https://doi.org/10.1016/j.tips.2008.10.004
  18. Jacobs, K. M., Bhave, S. R., Ferraro, D. J., Jaboin, J. J., Hallahan, D. E. and Thotala, D. (2012) GSK-3beta: a bifunctional role in cell death pathways. Int. J. Cell Biol. 2012, 930710.
  19. Kim, D., Song, I., Keum, S., Lee, T., Jeong, M. J., Kim, S. S., McEnery, M. W. and Shin, H. S. (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31, 35-45. https://doi.org/10.1016/S0896-6273(01)00343-9
  20. Kim, J. W., Lee, S. H., Ko, H. M., Kwon, K. J., Cho, K. S., Choi, C. S., Park, J. H., Kim, H. Y., Lee, J., Han, S. H., Ignarro, L. J., Cheong, J. H., Kim, W. K. and Shin, C. Y. (2011) Biphasic regulation of tissue plasminogen activator activity in ischemic rat brain and in cultured neural cells: essential role of astrocyte-derived plasminogen activator inhibitor-1. Neurochem. Int. 58, 423-433. https://doi.org/10.1016/j.neuint.2010.12.020
  21. Kitchens, S. A., Burch, J. and Creazzo, T. L. (2003) T-type Ca2+ current contribution to Ca2+-induced Ca2+ release in developing myocardium. J. Mol. Cell. Cardiol. 35, 515-523. https://doi.org/10.1016/S0022-2828(03)00075-0
  22. Kopecky, B. J., Liang, R. and Bao, J. (2014) T-type calcium channel blockers as neuroprotective agents. Pflugers Arch. 466, 757-765. https://doi.org/10.1007/s00424-014-1454-x
  23. Lee, J. H., Gomora, J. C., Cribbs, L. L. and Perez-Reyes, E. (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H. Biophys. J. 77, 3034-3042. https://doi.org/10.1016/S0006-3495(99)77134-1
  24. Martin, R. L., Lee, J. H., Cribbs, L. L., Perez-Reyes, E. and Hanck, D. A. (2000) Mibefradil block of cloned T-type calcium channels. J. Pharmacol. Exp. Ther. 295, 302-308.
  25. Oguri, A., Tanaka, T., Iida, H., Meguro, K., Takano, H., Oonuma, H., Nishimura, S., Morita, T., Yamasoba, T., Nagai, R. and Nakajima, T. (2010) Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes. Am. J. Physiol. Cell Physiol. 298, C1414-C1423. https://doi.org/10.1152/ajpcell.00488.2009
  26. Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S. and Wurster, R. D. (2005) Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells. Cell Calcium 37, 105-119. https://doi.org/10.1016/j.ceca.2004.07.002
  27. Panner, A. and Wurster, R. D. (2006) T-type calcium channels and tumor proliferation. Cell Calcium. 40, 253-259. https://doi.org/10.1016/j.ceca.2006.04.029
  28. Perez-Reyes, E. (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117-161. https://doi.org/10.1152/physrev.00018.2002
  29. Rodriguez-Gomez, J. A., Levitsky, K. L. and Lopez-Barneo, J. (2012) T-type Ca2+ channels in mouse embryonic stem cells: modulation during cell cycle and contribution to self-renewal. Am. J. Physiol. Cell Physiol. 302, C494-504. https://doi.org/10.1152/ajpcell.00267.2011
  30. Rossier, M. F. (2016) T-type calcium channel: a privileged gate for calcium entry and control of adrenal steroidogenesis. Front. Endocrinol. (Lausanne) 7, 43.
  31. Splawski, I., Yoo, D. S., Stotz, S. C., Cherry, A., Clapham, D. E. and Keating, M. T. (2006) CACNA1H mutations in autism spectrum disorders. J. Biol. Chem. 281, 22085-22091. https://doi.org/10.1074/jbc.M603316200
  32. Strom, S. P., Stone, J. L., Ten Bosch, J. R., Merriman, B., Cantor, R. M., Geschwind, D. H. and Nelson, S. F. (2010) High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Mol. Psychiatry 15, 996-1005. https://doi.org/10.1038/mp.2009.41
  33. Taylor, J. T., Huang, L., Pottle, J. E., Liu, K., Yang, Y., Zeng, X., Keyser, B. M., Agrawal, K. C., Hansen, J. B. and Li, M. (2008) Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267, 116-124. https://doi.org/10.1016/j.canlet.2008.03.032
  34. Valerie, N. C., Dziegielewska, B., Hosing, A. S., Augustin, E., Gray, L. S., Brautigan, D. L., Larner, J. M. and Dziegielewski, J. (2013) Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem. Pharmacol. 85, 888-897. https://doi.org/10.1016/j.bcp.2012.12.017
  35. Viana, F., Van den Bosch, L., Missiaen, L., Vandenberghe, W., Droogmans, G., Nilius, B. and Robberecht, W. (1997) Mibefradil (Ro 40-5967) blocks multiple types of voltage-gated calcium channels in cultured rat spinal motoneurones. Cell Calcium 22, 299-311. https://doi.org/10.1016/S0143-4160(97)90068-3
  36. Watanabe, M., Ueda, T., Shibata, Y., Kumamoto, N., Shimada, S. and Ugawa, S. (2015) Expression and regulation of Cav3.2 T-type calcium channels during inflammatory hyperalgesia in mouse dorsal root ganglion neurons. PLoS ONE 10, e0127572. https://doi.org/10.1371/journal.pone.0127572
  37. Westmark, C. J. and Malter, J. S. (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 5, e52. https://doi.org/10.1371/journal.pbio.0050052
  38. Wu, S., Zhang, M., Vest, P. A., Bhattacharjee, A., Liu, L. and Li, M. (2000) A mibefradil metabolite is a potent intracellular blocker of L-type Ca(2+) currents in pancreatic beta-cells. J. Pharmacol. Exp. Ther. 292, 939-943.
  39. Xiang, Z., Thompson, A. D., Brogan, J. T., Schulte, M. L., Melancon, B. J., Mi, D., Lewis, L. M., Zou, B., Yang, L., Morrison, R., Santomango, T., Byers, F., Brewer, K., Aldrich, J. S., Yu, H., Dawson, E. S., Li, M., McManus, O., Jones, C. K., Daniels, J. S., Hopkins, C. R., Xie, X. S., Conn, P. J., Weaver, C. D. and Lindsley, C. W. (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson's disease. ACS Chem. Neurosci. 2, 730-742. https://doi.org/10.1021/cn200090z
  40. Zamponi, G. W. (2016) Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 15, 19-34. https://doi.org/10.1038/nrd.2015.5

Cited by

  1. TAF1-gene editing alters the morphology and function of the cerebellum and cerebral cortex vol.132, pp.None, 2018, https://doi.org/10.1016/j.nbd.2019.104539
  2. Role of T-type Calcium Channels in Regulating Neuronal Function vol.140, pp.10, 2018, https://doi.org/10.1248/yakushi.20-00138
  3. Genetic T-type calcium channelopathies vol.57, pp.1, 2020, https://doi.org/10.1136/jmedgenet-2019-106163
  4. Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid vol.28, pp.5, 2020, https://doi.org/10.4062/biomolther.2020.027
  5. Cav3.1 t‐type calcium channel is critical for cell proliferation and survival in newly generated cells of the adult hippocampus vol.232, pp.1, 2018, https://doi.org/10.1111/apha.13613
  6. Deciphering the role of T‐type calcium channels in regulating adult hippocampal neurogenesis vol.232, pp.1, 2018, https://doi.org/10.1111/apha.13643