DOI QR코드

DOI QR Code

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing (Queen Mary Institute, School of Medicine, Nanchang University) ;
  • Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University) ;
  • Oh, Seikwan (Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University) ;
  • Lee, Yong-Moon (Department of Pharmacy, College of Pharmacy, Chungbuk National University) ;
  • Hu, Zhenzhen (Department of Pathophysiology, College of Medicine, Nanchang University) ;
  • Oh, Ki-Wan (Department of Pharmacy, College of Pharmacy, Chungbuk National University)
  • Received : 2018.07.26
  • Accepted : 2018.08.08
  • Published : 2018.09.01

Abstract

Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Keywords

References

  1. Addolorato, G., Leggio, L., Agabio, R., Colombo, G. and Gasbarrini, G. (2006) Baclofen: a new drug for the treatment of alcohol dependence. Int. J. Clin. Pract. 60, 1003-1008. https://doi.org/10.1111/j.1742-1241.2006.01065.x
  2. Anacker, C., Zunszain, P. A., Cattaneo, A., Carvalho, L. A., Garabedian, M. J., Thuret, S., Pariante, C. M. (2011) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry, 16(7), 738-750. doi: 10.1038/mp.2011.26.
  3. Avalos-Fuentes, A., Albarran-Bravo, S., Loya-Lopez, S., Cortes, H., Recillas-Morales, S., & Magana, J. J., et al. (2015) Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its ca(2+) dependent modulation by camkii and calmodulin in striatonigral projections of the rat. Neurobiology of Disease, 74, 336-346. https://doi.org/10.1016/j.nbd.2014.12.008
  4. Bonci, A. and Williams, J. T. (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631-639. https://doi.org/10.1016/S0896-6273(00)80082-3
  5. Bonci, A. and Williams, J. T. (1997) Increased probability of GABA release during withdrawal from morphine. J. Neurosci. 17, 796-803. https://doi.org/10.1523/JNEUROSCI.17-02-00796.1997
  6. Cai, Z., Zhang, D., Ying, Y., Yan, M., Yang, J., Xu, F., Oh, K. and Hu, Z. (2014) Inhibitory modulation of CART peptides in accumbal neuron through decreasing interaction of CaMKIIalpha with dopamine D3 receptors. Brain Res. 1557, 101-110. https://doi.org/10.1016/j.brainres.2014.02.024
  7. Carroll, B. J., Cassidy, F., Naftolowitz, D., Tatham, N. E., Wilson, W. H., Iranmanesh, A., Liu, P. Y. and Veldhuis, J. D. (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr. Scand. Suppl. (433), 90-103.
  8. Chartoff, E. H. and Carlezon, W. A., Jr. (2014) Drug withdrawal conceptualized as a stressor. Behav. Pharmacol. 25, 473-492.
  9. Choudhary, A. G., Somalwar, A. R., Sagarkar, S., Rale, A., Sakharkar, A., Subhedar, N. K. and Kokare, D. M. (2018) CART neurons in the lateral hypothalamus communicate with the nucleus accumbens shell via glutamatergic neurons in paraventricular thalamic nucleus to modulate reward behavior. Brain Struct. Funct. 223, 1313-1328.
  10. Craige, C. P., Lewandowski, S., Kirby, L. G. and Unterwald, E. M. (2015) Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal. Neuropharmacology 93, 41-51. https://doi.org/10.1016/j.neuropharm.2015.01.021
  11. Cui, Y., Yang, Y., Ni, Z., Dong, Y., Cai, G., Foncelle, A., Ma, S., Sang, K., Tang, S., Li, Y., Shen, Y., Berry, H., Wu, S. and Hu, H. (2018) Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323-327. https://doi.org/10.1038/nature25752
  12. Dallvechia-Adams, S., Kuhar, M. J. and Smith, Y. (2002) Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: colocalization with gamma-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. J. Comp. Neurol. 448, 360-372. https://doi.org/10.1002/cne.10268
  13. Dandekar, M. P., Singru, P. S., Kokare, D. M. and Subhedar, N. K. (2009) Cocaine- and amphetamine-regulated transcript peptide plays a role in the manifestation of depression: social isolation and olfactory bulbectomy models reveal unifying principles. Neuropsychopharmacology 34, 1288-1300. https://doi.org/10.1038/npp.2008.201
  14. Douglass, J. and Daoud, S. (1996) Characterization of the human cDNA and genomic DNA encoding CART: a cocaine- and amphetamine-regulated transcript. Gene 169, 241-245. https://doi.org/10.1016/0378-1119(96)88651-3
  15. Douglass, J., McKinzie, A. A. and Couceyro, P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471-2481. https://doi.org/10.1523/JNEUROSCI.15-03-02471.1995
  16. Esteban, S., Moranta, D., Sastre-Coll, A., Miralles, A. and Garcia-Sevilla, J. A. (2002) Withdrawal from chronic ethanol increases the sensitivity of presynaptic 5-HT(1A) receptors modulating serotonin and dopamine synthesis in rat brain in vivo. Neurosci. Lett. 326, 121-124. https://doi.org/10.1016/S0304-3940(02)00313-0
  17. Filip, M., Frankowska, M., Sadakierska-Chudy, A., Suder, A., Szumiec, L., Mierzejewski, P., Bienkowski, P., Przegalinski, E. and Cryan, J. F. (2015) GABAB receptors as a therapeutic strategy in substance use disorders: focus on positive allosteric modulators. Neuropharmacology 88, 36-47. https://doi.org/10.1016/j.neuropharm.2014.06.016
  18. Fu, Q., Zhou, X., Dong, Y., Huang, Y., Yang, J., Oh, K. W. and Hu, Z. (2016) Decreased caffeine-induced locomotor activity via microinjection of CART peptide into the nucleus accumbens is linked to inhibition of the pCaMKIIa-D3R interaction. PLoS ONE 11, e0159104. https://doi.org/10.1371/journal.pone.0159104
  19. George, O., Ghozland, S., Azar, M. R., Cottone, P., Zorrilla, E. P., Parsons, L. H., O'Dell, L. E., Richardson, H. N. and Koob, G. F. (2007) CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc. Natl. Acad. Sci. U.S.A. 104, 17198-17203. https://doi.org/10.1073/pnas.0707585104
  20. Graeff, F. G., Guimaraes, F. S., De Andrade, T. G. and Deakin, J. F. (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129-141. https://doi.org/10.1016/0091-3057(95)02135-3
  21. Greenwell, T. N., Funk, C. K., Cottone, P., Richardson, H. N., Chen, S. A., Rice, K. C., Zorrilla, E. P. and Koob, G. F. (2009) Corticotropin-releasing factor-1 receptor antagonists decrease heroin selfadministration in long- but not short-access rats. Addict. Biol. 14, 130-143. https://doi.org/10.1111/j.1369-1600.2008.00142.x
  22. Herman, J. P., Ostrander, M. M., Mueller, N. K. and Figueiredo, H. (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 1201-1213. https://doi.org/10.1016/j.pnpbp.2005.08.006
  23. Hu, Z., Oh, E. H., Chung, Y. B., Hong, J. T. and Oh, K. W. (2015) Predominant D1 receptors involvement in the over-expression of CART peptides after repeated cocaine administration. Korean J. Physiol. Pharmacol. 19, 89-97. https://doi.org/10.4196/kjpp.2015.19.2.89
  24. Hubert, G. W., Jones, D. C., Moffett, M. C., Rogge, G. and Kuhar, M. J. (2008) CART peptides as modulators of dopamine and psychostimulants and interactions with the mesolimbic dopaminergic system. Biochem. Pharmacol. 75, 57-62. https://doi.org/10.1016/j.bcp.2007.07.028
  25. Javitt, D. C., Schoepp, D., Kalivas, P. W., Volkow, N. D., Zarate, C., Merchant, K., Bear, M. F., Umbricht, D., Hajos, M., Potter, W. Z. and Lee, C. M. (2011) Translating glutamate: from pathophysiology to treatment. Sci. Transl. Med. 3, 102mr2.
  26. Jaworski, J. N., Kozel, M. A., Philpot, K. B. and Kuhar, M. J. (2003a) Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity. J. Pharmacol. Exp. Ther. 307, 1038-1044. https://doi.org/10.1124/jpet.103.052332
  27. Jaworski, J. N., Vicentic, A., Hunter, R. G., Kimmel, H. L. and Kuhar, M. J. (2003b) CART peptides are modulators of mesolimbic dopamine and psychostimulants. Life Sci. 73, 741-747. https://doi.org/10.1016/S0024-3205(03)00394-1
  28. Jean, A., Conductier, G., Manrique, C., Bouras, C., Berta, P., Hen, R., Charnay, Y., Bockaert, J. and Compan, V. (2007) Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 104, 16335-16340. https://doi.org/10.1073/pnas.0701471104
  29. Jean, A., Laurent, L., Bockaert, J., Charnay, Y., Dusticier, N., Nieoullon, A., Barrot, M., Neve, R. and Compan, V. (2012) The nucleus accumbens 5-HTR(4)-CART pathway ties anorexia to hyperactivity. Transl. Psychiatry 2, e203. https://doi.org/10.1038/tp.2012.131
  30. Jiao, D., Liu, Y., Li, X., Liu, J. and Zhao, M. (2015) The role of the GABA system in amphetamine-type stimulant use disorders. Front. Cell. Neurosci. 9, 162.
  31. Job, M. O., McNamara, I. M. and Kuhar, M. J. (2011) cart peptides regulate psychostimulants and may be endogenous antidepressants. Curr. Neuropharmacol. 9, 12-16. https://doi.org/10.2174/157015911795017074
  32. Knapp, D. J., Overstreet, D. H. and Breese, G. R. (2007) Baclofen blocks expression and sensitization of anxiety-like behavior in an animal model of repeated stress and ethanol withdrawal. Alcohol. Clin. Exp. Res. 31, 582-595.
  33. Koob, G. F. (2008a) Hedonic homeostatic dysregulation as a driver of drug-seeking behavior. Drug Discov. Today Dis. Models 5, 207-215. https://doi.org/10.1016/j.ddmod.2009.04.002
  34. Koob, G. F. (2008b) A role for brain stress systems in addiction. Neuron 59, 11-34. https://doi.org/10.1016/j.neuron.2008.06.012
  35. Koob, G. F. and Le Moal, M. (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278, 52-58. https://doi.org/10.1126/science.278.5335.52
  36. Koob, G. F., Sanna, P. P. and Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467-476. https://doi.org/10.1016/S0896-6273(00)80557-7
  37. Koob, G. F., Ahmed, S. H., Boutrel, B., Chen, S. A., Kenny, P. J., Markou, A., O'Dell, L. E., Parsons, L. H. and Sanna, P. P. (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci. Biobehav. Rev. 27, 739-749. https://doi.org/10.1016/j.neubiorev.2003.11.007
  38. Kuhar, M. J. and Yoho, L. L. (1999) CART peptide analysis by Western blotting. Synapse 33, 163-171. https://doi.org/10.1002/(SICI)1098-2396(19990901)33:3<163::AID-SYN1>3.0.CO;2-T
  39. Kuhar, M. J., Adams, L. D., Hunter, R. G., Vechia, S. D. and Smith, Y. (2000) CART peptides. Regul. Pept. 89, 1-6. https://doi.org/10.1016/S0167-0115(00)00096-3
  40. Kulik, A., Vida, I., Lujan, R., Haas, C. A., Lopez-Bendito, G., Shigemoto, R. and Frotscher, M. (2003) Subcellular localization of metabotropic GABA(B) receptor subunits GABA(B1a/b) and GABA(B2) in the rat hippocampus. J. Neurosci. 23, 11026-11035. https://doi.org/10.1523/JNEUROSCI.23-35-11026.2003
  41. Kupfer, D. J., Frank, E. and Phillips, M. L. (2012) Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045-1055. https://doi.org/10.1016/S0140-6736(11)60602-8
  42. Lecca, S., Meye, F. J. and Mameli, M. (2014) The lateral habenula in addiction and depression: an anatomical, synaptic and behavioral overview. Eur. J. Neurosci. 39, 1170-1178. https://doi.org/10.1111/ejn.12480
  43. Lee, J. S. and Lee, H. S. (2014) Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: light microscopic study. Brain Res. 1560, 46-59. https://doi.org/10.1016/j.brainres.2014.03.006
  44. Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., Malinow, R., Yates, J. R., 3rd and Hu, H. (2013a) betaCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016-1020. https://doi.org/10.1126/science.1240729
  45. Li, S. X., Yan, S. Y., Bao, Y. P., Lian, Z., Qu, Z., Wu, Y.P. and Liu, Z. M. (2013b) Depression and alterations in hypothalamic-pituitaryadrenal and hypothalamic-pituitary-thyroid axis function in male abstinent methamphetamine abusers. Hum. Psychopharmacol. 28, 477-483. https://doi.org/10.1002/hup.2335
  46. Liu, X. B. and Murray, K. D. (2012) Neuronal excitability and calcium/calmodulin-dependent protein kinase type II: location, location, location. Epilepsia 53 Suppl 1, 45-52.
  47. Ma, Z., Pearson, E. and Tao, R. (2007) CART peptides increase 5-hydroxytryptamine in the dorsal raphe and nucleus accumbens of freely behaving rats. Neurosci. Lett. 417, 303-307. https://doi.org/10.1016/j.neulet.2007.02.049
  48. Mao, P. (2011) Potential antidepressant role of neurotransmitter CART: implications for mental disorders. Depress. Res. Treat. 2011, 762139.
  49. Mao, P. Z., Meshul, C. K., Thuillier, P., Goldberg, N. R. S. and Reddy, P. H. (2012) CART Peptide Is a Potential Endogenous Antioxidant and Preferentially Localized in Mitochondria. PLoS ONE 7, e29343. https://doi.org/10.1371/journal.pone.0029343
  50. Moffett, M. C., Song, J. and Kuhar, M. J. (2011) CART peptide inhibits locomotor activity induced by simultaneous stimulation of D1 and D2 receptors, but not by stimulation of individual dopamine receptors. Synapse 65, 1-7. https://doi.org/10.1002/syn.20815
  51. Nagelova, V., Pirnik, Z., Zelezna, B. and Maletinska, L. (2014) CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res. 1547, 16-24. https://doi.org/10.1016/j.brainres.2013.12.024
  52. Padgett, C. L., Lalive, A. L., Tan, K. R., Terunuma, M., Munoz, M. B., Pangalos, M. N., Martinez-Hernandez, J., Watanabe, M., Moss, S. J., Lujan, R., Luscher, C. and Slesinger, P. A. (2012) Methamphetamine-evoked depression of GABA(B) receptor signaling in GABAneurons of the VTA. Neuron 73, 978-989. https://doi.org/10.1016/j.neuron.2011.12.031
  53. Pae, C. U., Lee, C. and Paik, I. H. (2007) Therapeutic implication of cocaine-and amphetamine-regulated transcript (CART) in the treatment of depression. Med. Hypotheses 69, 132-135. https://doi.org/10.1016/j.mehy.2006.11.009
  54. Parsons, L. H., Koob, G. F. and Weiss, F. (1996) Extracellular serotonin is decreased in the nucleus accumbens during withdrawal from cocaine self-administration. Behav. Brain Res. 73, 225-228.
  55. Peng, G. J., Tian, J. S., Gao, X. X., Zhou, Y. Z. and Qin, X. M. (2015) Research on the pathological mechanism and drug treatment mechanism of depression. Curr. Neuropharmacol. 13, 514-523. https://doi.org/10.2174/1570159X1304150831120428
  56. Peng, Q., Sun, X., Liu, Z., Yang, J., Oh, K. W. and Hu, Z. (2014) Microinjection of CART (cocaine- and amphetamine-regulated transcript) peptide into the nucleus accumbens inhibits the cocaine-induced upregulation of dopamine receptors and locomotor sensitization. Neurochem. Int. 75, 105-111. https://doi.org/10.1016/j.neuint.2014.06.005
  57. Pin, J. P. and Bettler, B. (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540, 60-68. https://doi.org/10.1038/nature20566
  58. Pompili, M., Serafini, G., Innamorati, M., Moller-Leimkuhler, A. M., Giupponi, G., Girardi, P., Tatarelli, R. and Lester, D. (2010) The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: a selective overview for the implications of suicide prevention. Eur. Arch. Psychiatry Clin. Neurosci. 260, 583-600. https://doi.org/10.1007/s00406-010-0108-z
  59. Ruhe, H. G., Mason, N. S. and Schene, A. H. (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol. Psychiatry 12, 331-359. https://doi.org/10.1038/sj.mp.4001949
  60. Shabel, S. J., Proulx, C. D., Piriz, J. and Malinow, R. (2014) Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 345, 1494-1498. https://doi.org/10.1126/science.1250469
  61. Smith, S. M., Vaughan, J. M., Donaldson, C. J., Rivier, J., Li, C., Chen, A. and Vale, W. W. (2004) Cocaine- and amphetamine-regulated transcript activates the hypothalamic-pituitary-adrenal axis through a corticotropin-releasing factor receptor-dependent mechanism. Endocrinology 145, 5202-5209. https://doi.org/10.1210/en.2004-0708
  62. Specio, S. E., Wee, S., O'Dell, L. E., Boutrel, B., Zorrilla, E. P. and Koob, G. F. (2008) CRF(1) receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology 196, 473-482. https://doi.org/10.1007/s00213-007-0983-9
  63. Spiess, J., Villarreal, J. and Vale, W. (1981) Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry 20, 1982-1988. https://doi.org/10.1021/bi00510a038
  64. Stanek, L. M. (2006) Cocaine- and amphetamine related transcript (CART) and anxiety. Peptides 27, 2005-2011. https://doi.org/10.1016/j.peptides.2006.01.027
  65. Stanley, S. A., Murphy, K. G., Bewick, G. A., Kong, W. M., Opacka-Juffry, J., Gardiner, J. V., Ghatei, M., Small, C. J. and Bloom, S. R. (2004) Regulation of rat pituitary cocaine- and amphetamineregulated transcript (CART) by CRH and glucocorticoids. Am. J. Physiol. Endocrinol. Metab. 287, E583-E590. https://doi.org/10.1152/ajpendo.00576.2003
  66. Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouebe, G., Deisseroth, K., Tye, K. M. and Luscher, C. (2012) GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173-1183. https://doi.org/10.1016/j.neuron.2012.02.015
  67. Turnbull, A. V. and Rivier, C. (1997) Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc. Soc. Exp. Biol. Med. 215, 1-10. https://doi.org/10.3181/00379727-215-44108
  68. Upadhya, M. A., Nakhate, K. T., Kokare, D. M., Singh, U., Singru, P. S. and Subhedar, N. K. (2012) CART peptide in the nucleus accumbens shell acts downstream to dopamine and mediates the reward and reinforcement actions of morphine. Neuropharmacology 62, 1823-1833. https://doi.org/10.1016/j.neuropharm.2011.12.004
  69. Vrang, N., Larsen, P. J., Kristensen, P. and Tang-Christensen, M. (2000) Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat. Endocrinology 141, 794-801. https://doi.org/10.1210/endo.141.2.7295
  70. Wiehager, S., Beiderbeck, D. I., Gruber, S. H., El-Khoury, A., Wamsteeker, J., Neumann, I. D., Petersen, A. and Mathe, A. A. (2009) Increased levels of cocaine and amphetamine regulated transcript in two animal models of depression and anxiety. Neurobiol. Dis. 34, 375-380. https://doi.org/10.1016/j.nbd.2009.02.010
  71. Wu, B., Hu, S., Yang, M., Pan, H. and Zhu, S. (2006) CART peptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem. Biophys. Res. Commun. 347, 656-661. https://doi.org/10.1016/j.bbrc.2006.06.117
  72. Xiong, L., Meng, Q., Sun, X., Lu, X., Fu, Q., Peng, Q., Yang, J., Oh, K. W. and Hu, Z. Z. (2018) CART peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient overexpression of alpha-Ca2+/Calmodulin-dependent Protein Kinase II. J Neurochem. doi: 10.1111/jnc.14289.
  73. Yang, Y., Cui, Y., Sang, K., Dong, Y., Ni, Z., Ma, S. and Hu, H. (2018) Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317-322. https://doi.org/10.1038/nature25509
  74. Yoon, H. S., Adachi, N. and Kunugi, H. (2014) Microinjection of cocaine-and amphetamine-regulated transcript 55-102 peptide into the nucleus accumbens could modulate anxiety-related behavior in rats. Neuropeptides 48, 319-325. https://doi.org/10.1016/j.npep.2014.09.002
  75. Yoon, H. S., Kim, S., Park, H. K. and Kim, J. H. (2007) Microinjection of CART peptide 55-102 into the nucleus accumbens blocks both the expression of behavioral sensitization and ERK phosphorylation by cocaine. Neuropharmacology 53, 344-351. https://doi.org/10.1016/j.neuropharm.2007.05.014
  76. Yoon, H. S., Hattori, K., Sasayama, D. and Kunugi, H. (2018) Low cocaine- and amphetamine-regulated transcript (CART) peptide levels in human cerebrospinal fluid of major depressive disorder (MDD) patients. J. Affect. Disord. 232, 134-138. https://doi.org/10.1016/j.jad.2018.02.039
  77. Zuloaga, D. G., Jacobskind, J. S. and Raber, J. (2015) Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front. Neurosci. 9, 178.