참고문헌
- Petschacher B, Nidetzky B. 2016. Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J. Biotechnol. 235: 61-83. https://doi.org/10.1016/j.jbiotec.2016.03.052
- Castanys-Munoz E, Martin MJ, Prieto PA. 2013. 2'- Fucosyllactose: an abundant, genetically determined soluble glycan present in human milk. Nutr. Rev. 71: 773-789. https://doi.org/10.1111/nure.12079
- Barile D, Rastall RA. 2013. Human milk and related oligosaccharides as prebiotics. Curr. Opin. Biotechnol. 24: 214-219. https://doi.org/10.1016/j.copbio.2013.01.008
- Morrow AL, Ruiz-Palacios G, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK, et al. 2004. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145: 297-303. https://doi.org/10.1016/j.jpeds.2004.04.054
- Newburg DS, Ruiz-Palacios GM, Morrow AL. 2005. Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 25: 37-58. https://doi.org/10.1146/annurev.nutr.25.050304.092553
- Magalhaes A, Reis CA. 2010. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz. J. Med. Biol. Res. 43: 611-618. https://doi.org/10.1590/S0100-879X2010007500049
- Weichert S, Jennewein S, Hufner E, Weiss C, Borkowski J, Putze J, et al. 2013. Bioengineered 2'-fucosyllactose and 3'- fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 33: 831-838. https://doi.org/10.1016/j.nutres.2013.07.009
- Gonia S, Tuepker M, Heisel T, Autran C, Bode L, Gale CA. 2015. Human milk oligosaccharides inhibit Candida albicans invasion of human premature intestinal epithelial cells. J. Nutr. 145: 1992-1998. https://doi.org/10.3945/jn.115.214940
- Kunz C, Rudloff S, Baier W, Klein N, Strobel S. 2000. Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20: 699-722. https://doi.org/10.1146/annurev.nutr.20.1.699
- Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz- Palacios G, Pickering LK, et al. 2001. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11: 365-372. https://doi.org/10.1093/glycob/11.5.365
- Lee WH, Pathanibul P, Quarterman J, Jo JH, Han NS, Miller MJ, et al. 2012. Whole cell biosynthesis of a functional oligosaccharide, 2'-fucosyllactose, using engineered Escherichia coli. Microb. Cell Fact. 11: 48. https://doi.org/10.1186/1475-2859-11-48
- Thurl S, Muller-Verner B, Sawatzki G. 1996. Quantification of individual oligosaccharide compounds from human milk using high-pH anion-exchange chromatography. Anal. Biochem. 235: 202-206. https://doi.org/10.1006/abio.1996.0113
- Chaturvedi P, Warren CD, Ruiz-Palacios G, Pickering LK, Newburg DS. 1997. Milk oligosaccharide profiles by reversedphase HPLC of their perbenzoylated derivatives. Anal. Biochem. 251: 89-97. https://doi.org/10.1006/abio.1997.2250
- Bao Y, Chen C, Newburg DS. 2013. Quantification of neutral human milk oligosaccharides by graphitic carbon highperformance liquid chromatography with tandem mass spectrometry. Anal. Biochem. 433: 28-35. https://doi.org/10.1016/j.ab.2012.10.003
- Chin YW, Seo N, Kim JH, Seo JH. 2016. Metabolic engineering of Escherichia coli to produce 2'-fucosyllactose via salvage pathway of guanosine 5'-diphosphate (GDP)-Lfucose. Biotechnol. Bioeng. 113: 2443-2452. https://doi.org/10.1002/bit.26015
- Becker DJ, Lowe JB. 2003. Fucose: biosynthesis and biological function in mammals. Glycobiology 13: 41R-53R. https://doi.org/10.1093/glycob/cwg054
- Berteau O, McCort I, Goasdoue N, Tissot B, Daniel R. 2002. Characterization of a new alpha-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of alpha-L-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology 12: 273-282. https://doi.org/10.1093/glycob/12.4.273
- Sakurama H, Tsutsumi E, Ashida H, Katayama T, Yamamoto K, Kumagai H. 2012. Differences in the substrate specificities and active-site structures of two alpha-Lfucosidases (glycoside hydrolase family 29) from Bacteroides thetaiotaomicron. Biosci. Biotechnol. Biochem. 76: 1022-1024. https://doi.org/10.1271/bbb.111004
-
Aminoff D, Furukawa K. 1970. Enzymes that destroy blood group specificity. I. Purification and properties of
${\alpha}$ -Lfucosidase from Clostridium perfringens. J. Biol. Chem. 245: 1659-1669. - Bahl OP. 1970. Glycosidases of Aspergillus niger. II. Purification and general properties of 1,2-alpha-L-fucosidase. J. Biol. Chem. 245: 299-304.
-
Kochibe N. 1973. Purification and properties of
${\alpha}$ -L-fucosidase from Bacillus fulminans. J. Biochem. 74: 1141-1149. https://doi.org/10.1093/oxfordjournals.jbchem.a130341 - Zivkovic AM, German JB, Lebrilla CB, Mills DA. 2011. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. USA 108: 4653-4568. https://doi.org/10.1073/pnas.1000083107
- Chin YW, Kim JY, Lee WH, Seo JH. 2015. Enhanced production of 2'-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J. Biotechnol. 210: 107-115. https://doi.org/10.1016/j.jbiotec.2015.06.431
피인용 문헌
- Development of fluorescent Escherichia coli for a whole-cell sensor of 2ʹ-fucosyllactose vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-67359-x