References
- Pandey BP, Lee N, Choi KY, Jung E, Jeong DH, Kim BG. 2011. Screening of bacterial cytochrome P450s responsible for regiospecific hydroxylation of (iso)flavonoids. Enzyme Microb. Technol. 48: 386-392. https://doi.org/10.1016/j.enzmictec.2011.01.001
- Kim DH, Ahn T, Jung HC, Pan JG, Yun CH. 2009. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metab. Dispos. 37: 932-936. https://doi.org/10.1124/dmd.108.026484
- Furuya T, Kino K. 2014. Regioselective synthesis of piceatannol from resveratrol: catalysis by two-component flavin-dependent monooxygenase HpaBC in whole cells. Tetrahedron Lett. 55: 2853-2855. https://doi.org/10.1016/j.tetlet.2014.03.076
- Lin Y, Yan Y. 2014. Biotechnological production of plantspecific hydroxylated phenylpropanoids. Biotechnol. Bioeng. 111: 1895-1899. https://doi.org/10.1002/bit.25237
- Furuya T, Sai M, Kino K. 2016. Biocatalytic synthesis of 3,4,5,3',5'-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC. Biosci. Biotechnol. Biochem. 80: 193-198. https://doi.org/10.1080/09168451.2015.1072463
- Lin Y, Yan Y. 2012. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb. Cell Fact. 11: 42. https://doi.org/10.1186/1475-2859-11-42
- Prieto MA, Perez-Aranda A, Garcia JL. 1993. Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. J. Bacteriol. 175: 2162-2167. https://doi.org/10.1128/jb.175.7.2162-2167.1993
- Heo KT, Kang S-Y, Jang J-H, Hong Y-S. 2017. Sam5, a coumarate 3-hydroxylase from Saccharothrix espanaensis: new insight into the piceatannol production as a resveratrol 3'- hydroxylase. ChemistrySelect 2: 8785-8789. https://doi.org/10.1002/slct.201701969
- Surh YJ. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3: 768-780. https://doi.org/10.1038/nrc1189
- Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, et al. 2002. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 86: 774-778. https://doi.org/10.1038/sj.bjc.6600197
- Piotrowska H, Kucinska M, Murias M. 2012. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat. Res. 750: 60-82. https://doi.org/10.1016/j.mrrev.2011.11.001
- Kwon JY, Seo SG, Heo YS, Yue S, Cheng JX, Lee KW, et al. 2012. Piceatannol, natural polyphenolic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J. Biol. Chem. 287: 11566-11578. https://doi.org/10.1074/jbc.M111.259721
- Ullrich R, Hofrichter M. 2007. Enzymatic hydroxylation of aromatic compounds. Cell. Mol. Life Sci. 64: 271-293. https://doi.org/10.1007/s00018-007-6362-1
- Cheng TC, Lai CS, Chung MC, Kalyanam N, Majeed M, Ho CT, et al. 2014. Potent anti-cancer effect of 3'-hydroxypterostilbene in human colon xenograft tumors. PLoS One 9: e111814. https://doi.org/10.1371/journal.pone.0111814
- Kim YM, Yun J, Lee CK, Lee H, Min KR, Kim Y. 2002. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J. Biol. Chem. 277: 16340-16344. https://doi.org/10.1074/jbc.M200678200
- Dziggel C, Schafer H, Wink M. 2017. Tools of pathway reconstruction and production of economically relevant plant secondary metabolites in recombinant microorganisms. Biotechnol. J. 12: 1600145. https://doi.org/10.1002/biot.201600145
- Kang SY, Lee JK, Jang JH, Hwang BY, Hong YS. 2015. Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli. Microb. Cell Fact. 14: 191. https://doi.org/10.1186/s12934-015-0379-1
- Diaz E, Ferrandez A, Prieto MA, Garcia JL. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65: 523-569. https://doi.org/10.1128/MMBR.65.4.523-569.2001
- Spyrou G, Haggard-Ljungquist E, Krook M, Jornvall H, Nilsson E, Reichard P. 1991. Characterization of the flavin reductase gene (fre) of Escherichia coli and construction of a plasmid for overproduction of the enzyme. J. Bacteriol. 173: 3673-3679. https://doi.org/10.1128/jb.173.12.3673-3679.1991
- Choi O, Lee JK, Kang SY, Pandey RP, Sohng JK, Ahn JS, et al. 2014. Construction of artificial biosynthetic pathways for resveratrol glucoside derivatives. J. Microbiol. Biotechnol. 24: 614-618. https://doi.org/10.4014/jmb.1401.01031
- Henry C, Vitrac X, Decendit A, Ennamany R, Krisa S, Merillon JM. 2005. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 53: 798-803. https://doi.org/10.1021/jf048909e
- Day AJ, DuPont MS, Ridley S, Rhodes M, Rhodes MJ, Morgan MR, et al. 1998. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. FEBS Lett. 436: 71-75. https://doi.org/10.1016/S0014-5793(98)01101-6
- Mikstacka R, Przybylska D, Rimando AM, Baer-Dubowska W. 2007. Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Mol. Nutr. Food Res. 51: 517-524. https://doi.org/10.1002/mnfr.200600135
- Wilson MA, Rimando AM, Wolkow CA. 2008. Methoxylation enhances stilbene bioactivity in Caenorhabditis elegans. BMC Pharmacol. 8: 15. https://doi.org/10.1186/1471-2210-8-15
- Nutakul W, Sobers HS, Qiu P, Dong P, Decker EA, McClements DJ, Xiao H. 2011. Inhibitory effects of resveratrol and pterostilbene on human colon cancer cells: a side-byside comparison. J. Agric. Food Chem. 59: 10964-10970. https://doi.org/10.1021/jf202846b
- Rimando AM, Cuendet M, Desmarchelier C, Mehta RG, Pezzuto JM, Duke SO. 2002. Cancer chemopreventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J. Agric. Food Chem. 50: 3453-3457. https://doi.org/10.1021/jf0116855
Cited by
- Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice vol.67, pp.49, 2018, https://doi.org/10.1021/acs.jafc.9b05963